差分,令$b_{i}=a_{i-1}\oplus a_{i}$,对于一个区间$[l,r]$,相当于令$a_{l-1}=a_{r+1}=0$之后求出$b_{l..r+1}$,对区间$[i-k,i)$异或1这个操作可以看作令$b_{i}$和$b_{i-k}$异或1,要求使得$b_{i}$全部为0

这就相当于要求$\forall 0\le i<k$,$b_{l..r+1}$中模$k$余$i$的位置异或为0,对$v_{0..k-1}$随机赋值,那么可以看作判断$\bigoplus_{l\le i\le r+1,i\equiv j(mod\ k)}b_{i}v_{j}=0$,这个可以用前缀和维护(特别的,要特判$b_{l}=a_{l}$和$b_{r+1}=a_{r}$)

判定完无解后,(若有解)考虑如何求最少操作次数:

假设枚举$i$,对于模$k$余$i$且为1的$b_{j}$,将这些$j$记录下来,写作$pos_{1},pos_{2},...,pos_{2m}$(由于有解,必然是偶数个),答案即为$\frac{\sum_{i=1}^{m}pos_{2i}-pos_{2i-1}}{k}$(可以看作一个1不断向后移动,与之后第一个1相消)

对于相邻的模$k$余$i$的位置必然一正一负,通过前缀和(强制最后一个出现的数符号为正)来维护即可(同样要特判$l$和$r+1$),总复杂度为$o(n+m\log_{2}n)$

对于$l$和$r+1$的特判也可以通过$sum_{i,0/1}$表示假设$b_{i}=0/1$时的答案来避免

(另外要特判$k=1$,此时答案即为区间内1的个数)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2000005
4 #define ll long long
5 int n,t,q,l,r,ans,a[N],b[N],v[N],f[N];
6 ll g[N],sum[N][2];
7 char s[N];
8 int main(){
9 srand(time(0));
10 scanf("%d%d%d%s",&n,&t,&q,s);
11 for(int i=0;i<n;i++)a[i+1]=s[i]-'0';
12 if (t==1){
13 for(int i=1;i<=n;i++)a[i]+=a[i-1];
14 for(int i=1;i<=q;i++){
15 scanf("%d%d",&l,&r);
16 printf("%d\n",a[r]-a[l-1]);
17 }
18 return 0;
19 }
20 for(int i=1;i<=n;i++)b[i]=(a[i-1]^a[i]);
21 for(int i=0;i<t;i++)v[i]=1LL*rand()*rand()%(1<<30);
22 for(int i=1;i<=n;i++)f[i]=(f[i-1]^(b[i]*v[i%t]));
23 for(int i=1;i<=n+1;i++){
24 sum[i][0]=sum[i-1][b[i-1]];
25 sum[i][1]=sum[i-1][b[i-1]]+i-2*g[i%t];
26 if (b[i])g[i%t]=i-g[i%t];
27 }
28 for(int i=1;i<=q;i++){
29 scanf("%d%d",&l,&r);
30 ans=(f[l]^f[r]);
31 if (a[l])ans^=v[l%t];
32 if (a[r])ans^=v[(r+1)%t];
33 if (ans)printf("-1\n");
34 else{
35 if (a[l]!=b[l])printf("%lld\n",(sum[r+1][a[r]]-sum[l][1])/t);
36 else printf("%lld\n",(sum[r+1][a[r]]-sum[l-1][b[l-1]])/t);
37 }
38 }
39 return 0;
40 }

[loj6500]操作的更多相关文章

  1. LOJ6500. 「雅礼集训 2018 Day2」操作(哈希+差分)

    题目链接 https://loj.ac/problem/6500 题解 区间取反 \(01\) 串的经典套路是差分.我们令 \(b_i = a_i\ {\rm xor}\ a_{i - 1}\)(\( ...

  2. 关于DOM的操作以及性能优化问题-重绘重排

     写在前面: 大家都知道DOM的操作很昂贵. 然后贵在什么地方呢? 一.访问DOM元素 二.修改DOM引起的重绘重排 一.访问DOM 像书上的比喻:把DOM和JavaScript(这里指ECMScri ...

  3. Sql Server系列:分区表操作

    1. 分区表简介 分区表在逻辑上是一个表,而物理上是多个表.从用户角度来看,分区表和普通表是一样的.使用分区表的主要目的是为改善大型表以及具有多个访问模式的表的可伸缩性和可管理性. 分区表是把数据按设 ...

  4. C# ini文件操作【源码下载】

    介绍C#如何对ini文件进行读写操作,C#可以通过调用[kernel32.dll]文件中的 WritePrivateProfileString()和GetPrivateProfileString()函 ...

  5. js学习笔记:操作iframe

    iframe可以说是比较老得话题了,而且网上也基本上在说少用iframe,其原因大致为:堵塞页面加载.安全问题.兼容性问题.搜索引擎抓取不到等等,不过相对于这些缺点,iframe的优点更牛,跨域请求. ...

  6. jquery和Js的区别和基础操作

    jqery的语法和js的语法一样,算是把js升级了一下,这两种语法可以一起使用,只不过是用jqery更加方便 一个页面想要使用jqery的话,先要引入一下jqery包,jqery包从网上下一个就可以, ...

  7. ASP.NET Aries 入门开发教程7:DataGrid的行操作(主键操作区)

    前言: 抓紧勤奋,再接再励,预计共10篇来结束这个系列. 上一篇介绍:ASP.NET Aries 入门开发教程6:列表数据表格的格式化处理及行内编辑 本篇介绍主键操作区相关内容. 1:什么时候有默认的 ...

  8. 如何在高并发环境下设计出无锁的数据库操作(Java版本)

    一个在线2k的游戏,每秒钟并发都吓死人.传统的hibernate直接插库基本上是不可行的.我就一步步推导出一个无锁的数据库操作. 1. 并发中如何无锁. 一个很简单的思路,把并发转化成为单线程.Jav ...

  9. 【翻译】MongoDB指南/CRUD操作(四)

    [原文地址]https://docs.mongodb.com/manual/ CRUD操作(四) 1 查询方案(Query Plans) MongoDB 查询优化程序处理查询并且针对给定可利用的索引选 ...

随机推荐

  1. 左手IRR,右手NPV,掌握发家致富道路密码

    智能手机的普及让世界成为了我们指尖下的方寸之地. 在各种信息爆炸出现的同时,五花八门的理财信息与我们的生活越贴越近.投资不再仅仅是企业行为,对于个人而言,也是很值得关注的内容. 但是落脚到很小的例子之 ...

  2. Serverless:这真的是未来吗?(二)

    原文 | https://www.pulumi.com/blog/is_serverless_the_future_part_2/ 作者 | Lee Briggs & Piers Karsen ...

  3. Java(26)集合一Collection

    来源:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228419.html 博客主页:https://www.cnblogs.com/testero ...

  4. 为代码编写稳定的单元测试 [Go]

    为代码编写稳定的单元测试 本文档配套代码仓库地址: https://github.com/liweiforeveryoung/curd_demo 配合 git checkout 出指定 commit ...

  5. css如何简单设置文字溢出盒子显示省略号

    1.单行文本溢出显示省略号单行文本溢出显示省略号,必须满足三个条件:(1)先强制一行内显示文本white-space:nowrap;(默认 normal自动换行)(2)超出的部分隐藏overflow: ...

  6. float 与 double 类型区别

    https://www.runoob.com/w3cnote/float-and-double-different.html float 单精度浮点数在机内占 4 个字节,用 32 位二进制描述. d ...

  7. for...in和Object.keys()区别

    区别: for in 用来枚举对象的属性,某些情况下,可能按照随机顺序遍历数组元素 object.keys() 可以返回对象属性为元素的数组,数组中属性名顺序和for in比那里返回顺序一样 ---f ...

  8. javascript-jquery对象的动画处理

    一.显示与隐藏动画效果 1.hide(动画持续时间,easing用来指定切换效果,动画执行完毕调用函数): $("p").hide(5000,"swing",f ...

  9. [Beta]the Agiles Scrum Meeting 12

    会议时间:2020.5.27 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 issue yjy 帮助解决技术问题 tq 撰写技术博客 wjx 博客评分界面美化 dzx 博客评分界 ...

  10. 震惊,本Orzer下阶段直接怒送四个笑脸

    众所周知,在hzoi帝国中,Wzx是最菜的.那么究竟有多菜呢?下面就和小编一起来看看吧. 近日,hzoi最菜的wzx在第四阶段竟然怒送4个笑脸,同机房神犇直呼wzx太菜了! 以上就是wzx第四阶段怒送 ...