P1251-餐巾计划问题【费用流】
正题
题目链接:https://www.luogu.com.cn/problem/P1251
题目大意
\(N\)天,第\(i\)天需要\(a_i\)个餐巾。
每个餐巾价格为\(p\),使用完后有两种清洗方法
- 清洗\(m\)天,费用为\(f\)
- 清洗\(n\)天,费用为\(s\)
求满足所有需求的最小花费
\(1\leq N\leq 2000,1\leq a_i\leq 10^7,1\leq p,f,s\leq 10^4\)
解题思路
网络流\(24\)题里的题目。而且显然是费用流
毛巾使用过后还可以再使用,我们有两种方法来限制这个条件
- 不使用最大流限制,那么我们每次使用毛巾可以视为流过一条流量为\(-inf\)的边,这样为了最小费用显然会满足所有条件。最后将流过的\(-inf\)的权值加回去就好了
- 使用最大流来限制。可以发现因为毛巾的条件是必须满足的,所以我们可以默认每次使用完后一定会剩下\(a_i\)个毛巾,所以我们直接让流量表示毛巾,然后每次多产生回\(a_i\)流量就好了
第二种好写一点,这里用的也是第二种
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=4100,inf=1e18;
struct node{
ll to,next,w,c;
}a[N<<4];
ll n,A,B,F,fa,fb,tot,ans,s,t;
ll ls[N],f[N],mf[N],pre[N],w[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
f[s]=0;mf[s]=inf;q.push(s);v[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<inf;
}
void Updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld",&n);
s=2*n+1;t=s+1;tot=1;
scanf("%lld%lld%lld%lld%lld",&A,&B,&F,&fa,&fb);
for(ll i=1;i<=n;i++)scanf("%lld",&w[i]);
for(ll i=1;i<=n;i++){
addl(s,i,inf,F);
addl(i,t,w[i],0);
addl(s,i+n,w[i],0);
if(i+A+1<=n)addl(i+n,i+A+1,inf,fa);
if(i+B+1<=n)addl(i+n,i+B+1,inf,fb);
if(i<n)addl(i,i+1,inf,0);
}
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}
P1251-餐巾计划问题【费用流】的更多相关文章
- P1251 餐巾计划问题 费用流
https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...
- LuoguP1251 餐巾计划问题(费用流)
题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...
- 洛谷.1251.餐巾计划问题(费用流SPFA)
题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...
- 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】
(题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...
- P1251 餐巾计划问题
P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...
- P1251 餐巾计划问题 网络流
P1251 餐巾计划问题 #include <bits/stdc++.h> using namespace std; typedef long long ll; , inf = 0x3f3 ...
- 网络流之最小费用最大流 P1251 餐巾计划问题
题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...
- 【Luogu】P1251餐巾计划(上下界费用流)
题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...
- 洛谷P1251 餐巾计划问题(最小费用最大流)
题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图
#6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
随机推荐
- jenkins+docker部署java项目
jenkins + maven + jdk + docker + docker register + dockerfile jenkins插件 # 安装插件 SSH # 配置 系统设置-> SS ...
- Linux放大缩小字体的快捷键
linux终端窗口字体缩放快捷键 环境:linux, 打开终端, 'ctrl' + '-'字体缩小,一行显示更多的内容 'ctrl' + 'shift' + '+'字体变大 ctl+shift+(+) ...
- Nodejs koa2读取服务器图片返回给前端直接展示
参考:https://blog.csdn.net/lihefei_coder/article/details/105435358 const fs = require('fs'); const pat ...
- 数据结构解析-HashTable
概要 HashTable也是散列表的一种实现,我们在上一篇解析了HashMap,在这里我们与HashMap做个对比,让你能清晰的了解两者的区别: 散列表 实现方式 数据安全 数据安全实现方式 key\ ...
- final、finally与finalize的区别?
一.final.finally与finalize的区别 final:final是一个修饰符,可以修饰类,方法和变量.final修饰类表示类不能被其它类继承,并且该类中的所有方法都会隐式的被final修 ...
- 处理URLs
问题 你有一个包含相对URLs路径的HTML文档,需要将这些相对路径转换成绝对路径的URLs. 方法 在你解析文档时确保有指定base URI,然后 使用 abs: 属性前缀来取得包含base URI ...
- QT怎样插入图片
工具/原料 QT designer 方法/步骤 1 首先创建一个Manwindow窗口 拖一个label到窗口上 把文字去掉,然后把label放大 找到stylesheet一栏 ...
- 面向对象之编写驱动程序--中断(linux系统、s3c6410开发板)
/*------------------------- *先申明下,本人是个菜鸟,刚开始接触驱动程序编写,交代下开发环境(主机系统redhat6.3,开发板ARM-s3c6410) 以watchdog ...
- java包装类注意点
Integer one = new Integer(100); Integer two = new Integer(100); Integer three = 100; Integer fore = ...
- Servlet体系及方法
时间:2016-11-11 15:07 --Servlet体系Servlet(interface): 实现类:GenericServlet.HttpServletServletConfig(in ...