正题

题目链接:https://www.luogu.com.cn/problem/P1251


题目大意

\(N\)天,第\(i\)天需要\(a_i\)个餐巾。

每个餐巾价格为\(p\),使用完后有两种清洗方法

  1. 清洗\(m\)天,费用为\(f\)
  2. 清洗\(n\)天,费用为\(s\)

求满足所有需求的最小花费

\(1\leq N\leq 2000,1\leq a_i\leq 10^7,1\leq p,f,s\leq 10^4\)


解题思路

网络流\(24\)题里的题目。而且显然是费用流

毛巾使用过后还可以再使用,我们有两种方法来限制这个条件

  1. 不使用最大流限制,那么我们每次使用毛巾可以视为流过一条流量为\(-inf\)的边,这样为了最小费用显然会满足所有条件。最后将流过的\(-inf\)的权值加回去就好了
  2. 使用最大流来限制。可以发现因为毛巾的条件是必须满足的,所以我们可以默认每次使用完后一定会剩下\(a_i\)个毛巾,所以我们直接让流量表示毛巾,然后每次多产生回\(a_i\)流量就好了

第二种好写一点,这里用的也是第二种


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=4100,inf=1e18;
struct node{
ll to,next,w,c;
}a[N<<4];
ll n,A,B,F,fa,fb,tot,ans,s,t;
ll ls[N],f[N],mf[N],pre[N],w[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
f[s]=0;mf[s]=inf;q.push(s);v[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<inf;
}
void Updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld",&n);
s=2*n+1;t=s+1;tot=1;
scanf("%lld%lld%lld%lld%lld",&A,&B,&F,&fa,&fb);
for(ll i=1;i<=n;i++)scanf("%lld",&w[i]);
for(ll i=1;i<=n;i++){
addl(s,i,inf,F);
addl(i,t,w[i],0);
addl(s,i+n,w[i],0);
if(i+A+1<=n)addl(i+n,i+A+1,inf,fa);
if(i+B+1<=n)addl(i+n,i+B+1,inf,fb);
if(i<n)addl(i,i+1,inf,0);
}
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}

P1251-餐巾计划问题【费用流】的更多相关文章

  1. P1251 餐巾计划问题 费用流

    https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...

  2. LuoguP1251 餐巾计划问题(费用流)

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  3. 洛谷.1251.餐巾计划问题(费用流SPFA)

    题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...

  4. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  5. P1251 餐巾计划问题

    P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...

  6. P1251 餐巾计划问题 网络流

    P1251 餐巾计划问题 #include <bits/stdc++.h> using namespace std; typedef long long ll; , inf = 0x3f3 ...

  7. 网络流之最小费用最大流 P1251 餐巾计划问题

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  8. 【Luogu】P1251餐巾计划(上下界费用流)

    题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...

  9. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  10. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. WPF LiveChart 图表详解

    //参考网址:https://www.cnblogs.com/zh7791/p/12617961.html 本文主要介绍LiveChart.WPF 中的图表的使用方法 类: 数据绑定, 数据显示样式等 ...

  2. C# 获得文件的执行路径的方法

    var path = System.Reflection.Assembly.GetEntryAssembly().Location;

  3. 解析和遍历一个HTML文档

    如何解析一个HTML文档: String html = "<html><head><title>First parse</title>< ...

  4. PE分析

    1 #include<windows.h> 2 #include<RichEdit.h> 3 #include "resource.h" 4 5 6 7 B ...

  5. 初识javaScript(慕课网学习笔记)

    js输出 window.alert() 警告框 document.write() 写到HTML文档中 innerHTML 写到HTML元素 console.log() 写到浏览器的控制台 <!D ...

  6. win10画板超实用的快捷键

    win10画板超实用的快捷键链接: Windows 7 画图中的快捷键 Windows中画图的快捷键 其中有windows默认的快捷键,关于画图工具加入到快捷工具也有详细的介绍.

  7. 用XPath定位Web页面元素时,如何快速验证XPath语句是否正确?

    在使用Selenium做Web UI自动化测试的过程中,XPath是一种定位页面元素的常用方式.然而,面对某些元素的XPath路径过于复杂,我们想快速验证拼凑的Xpath语句是否正确时,该怎么办呢?这 ...

  8. Python之requests模块-request api

    requests所有功能都能通过"requests/api.py"中的方法访问.它们分别是: requests.request(method, url, **kwargs) req ...

  9. 史上最全git命令集

    配置化命令 git config --global user.name "Your Name" git config --global user.email "email ...

  10. Git 学习路线

    前言 感觉 Git 还是很重要,应该单独开一篇文章来讲 Git... 使用系列教程 Git 系列教程(1)- Git 简介 Git 系列教程(2)- Git 安装 Git 系列教程(3)- 初次运行 ...