正题

题目链接:https://www.luogu.com.cn/problem/P1251


题目大意

\(N\)天,第\(i\)天需要\(a_i\)个餐巾。

每个餐巾价格为\(p\),使用完后有两种清洗方法

  1. 清洗\(m\)天,费用为\(f\)
  2. 清洗\(n\)天,费用为\(s\)

求满足所有需求的最小花费

\(1\leq N\leq 2000,1\leq a_i\leq 10^7,1\leq p,f,s\leq 10^4\)


解题思路

网络流\(24\)题里的题目。而且显然是费用流

毛巾使用过后还可以再使用,我们有两种方法来限制这个条件

  1. 不使用最大流限制,那么我们每次使用毛巾可以视为流过一条流量为\(-inf\)的边,这样为了最小费用显然会满足所有条件。最后将流过的\(-inf\)的权值加回去就好了
  2. 使用最大流来限制。可以发现因为毛巾的条件是必须满足的,所以我们可以默认每次使用完后一定会剩下\(a_i\)个毛巾,所以我们直接让流量表示毛巾,然后每次多产生回\(a_i\)流量就好了

第二种好写一点,这里用的也是第二种


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=4100,inf=1e18;
struct node{
ll to,next,w,c;
}a[N<<4];
ll n,A,B,F,fa,fb,tot,ans,s,t;
ll ls[N],f[N],mf[N],pre[N],w[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
f[s]=0;mf[s]=inf;q.push(s);v[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<inf;
}
void Updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld",&n);
s=2*n+1;t=s+1;tot=1;
scanf("%lld%lld%lld%lld%lld",&A,&B,&F,&fa,&fb);
for(ll i=1;i<=n;i++)scanf("%lld",&w[i]);
for(ll i=1;i<=n;i++){
addl(s,i,inf,F);
addl(i,t,w[i],0);
addl(s,i+n,w[i],0);
if(i+A+1<=n)addl(i+n,i+A+1,inf,fa);
if(i+B+1<=n)addl(i+n,i+B+1,inf,fb);
if(i<n)addl(i,i+1,inf,0);
}
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}

P1251-餐巾计划问题【费用流】的更多相关文章

  1. P1251 餐巾计划问题 费用流

    https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...

  2. LuoguP1251 餐巾计划问题(费用流)

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  3. 洛谷.1251.餐巾计划问题(费用流SPFA)

    题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...

  4. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  5. P1251 餐巾计划问题

    P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...

  6. P1251 餐巾计划问题 网络流

    P1251 餐巾计划问题 #include <bits/stdc++.h> using namespace std; typedef long long ll; , inf = 0x3f3 ...

  7. 网络流之最小费用最大流 P1251 餐巾计划问题

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  8. 【Luogu】P1251餐巾计划(上下界费用流)

    题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...

  9. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  10. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. (5)air202读取串口数据并上传到阿里云显示

    一.首先进行云端设置 根据串口助手显示的信息,以及模块文档说明我们可以知道 其中red和ir是红光LED的原始数据, HR表示心率值, HRvalid是心率是否有效标识, SP02是血氧数值,,SPO ...

  2. RibbitMQ 实战教程

    # RabbitMQ 实战教程 ## 1.MQ引言 ### 1.1 什么是MQ `MQ`(Message Quene) : 翻译为 `消息队列`,通过典型的 `生产者`和`消费者`模型,生产者不断向消 ...

  3. Golang gomail 发送邮件 --初使用

    gomail是一个第三方库,可以发送邮件 安装:go get -u github.com/go-gomail/gomail 使用示例: m := gomail.NewMessage() m.SetHe ...

  4. java agent简介

    java agent简介 主要就是两种,一种的方法是premain,一种是agentmain.这两种的区别是: premain是在jvm启动的时候类加载到虚拟机之前执行的 agentmain是可以在j ...

  5. 机械硬盘换到SSD后系统引导报错代码0xc000000e

    由于机械硬盘IO不够用,系统使用起来非常的缓慢,特意购买了新的SSD进行了替换.机械硬盘的IO在70左右,SSD的IO在1000-4000左右指普通消费SSD. 由于不想安装系统,就直接把机械硬盘的数 ...

  6. key存活时间和五个类型通用的一些指令操作

    一.设置key的存活时间 1.失效后 ttl 是 -2,get返回 null : 2.不设置存活时候 ttl 返回是 -1: 二.查找指令和删除指令.重命名key.查看key类型 1.模糊查询 2.严 ...

  7. word文档转成图片

    1:先把word文档转成pdf格式  这个是在word中转成pdf格式,保存好 2:再把pdf格式转成图片 在这个链接中打开https://smallpdf.com/cn/pdf-converter, ...

  8. 一文读懂Redis

    目录结构如下: 简介 Redis是一个高性能的key-value数据库.Redis对数据的操作都是原子性的. 优缺点 优点: 基于内存操作,内存读写速度快. Redis是单线程的,避免线程切换开销及多 ...

  9. ysoserial CommonsColletions3分析(1)

    CC3的利用链在JDK8u71版本以后是无法使用的,具体还是由于AnnotationInvocationHandler的readobject进行了改写. 而CC3目前有两条主流的利用链,利用Trans ...

  10. 安装Centos7,出现无法联网的问题-----解决办法

    安装Centos7,出现无法联网的问题-----解决办法 我安装的是centos7的版本 在我照着centos7安装教程-CentOS-PHP中文网这个教程安装完后 我发现我的centOS无法联网,在 ...