从梯度下降到Fista
前言:
FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA)。FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度。理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k)。
本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA。文章主要参考资料如下:
[1] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems。
[2] Proximal Gradient Descent for L1 Regularization
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------我是分割线-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
正文:
考虑以下线性转换问题:b = Ax + w (1)
例如在图像模糊问题中,A为模糊模板(由未模糊图像通过转换而来),b为模糊图像,w为噪声。并且,A和b已知,x为待求的系数。
求解该问题的的传统方法为最小二乘法,思想很简单粗暴:使得重构误差||Ax-b||2最小。即:
对f(x) = ||Ax-b||2求导,可得其导数为:f'(x) = 2AT(Ax-b)。对于该问题,令导数为零即可以取得最小值(函数f(x)为凸函数,其极小值即为最小值)。
1)如果A为非奇异矩阵,即A可逆的话,那么可得该问题的精确解为x=A-1b。
2)如果A为奇异矩阵,即A不可逆,则该问题没有精确解。退而求其次,我们求一个近似解就好,||Ax-b||2<=ϵϵ。

其中,||x||1为惩罚项,用以规范化参数x。该例子使用L1范数作为惩罚项,是希望x尽量稀疏(非零元素个数尽可能少),即b是A的一个稀疏表示。||Ax-b||2<=ϵ则为约束条件,即重构误差最小。问题(3)也可以描述为:

式子(4)即为一般稀疏表示的优化问题。希望重构误差尽可能小,同时参数的个数尽可能少。
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------我是分割线-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
考虑更为一般的情况,我们来讨论梯度下降法。有无约束的优化问题如下:

梯度下降法基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数F(x)在点a沿着梯度相反的方向−𝛻F(𝑎)-∇F(a)下降最快。
基于此,我们假设f(x)连续可微(continuously differentiable)。如果存在一个足够小的数值t>0使得x2 = x1 - t∇F(a),那么:
F(x1) >= F(x2)
梯度下降法的核心就是通过式子(6)找到序列{xk},使得F(xk) >= F(xk-1)。

下图详细说明了梯度下降的过程:

从上图可以看出:初始点不同,获得的最小值也不同。因为梯度下降法求解的是局部最小值,受初值的影响较大。如果函数f(x)为凸函数的话,则局部最小值亦为全局最小值。这时,初始点只对迭代速度有影响。
再回头看一下式子(6),我们使用步长tk和导数∇F(xk)来控制每一次迭代时x的变化量。再看一下上面那张图,彩色缤纷那张。对于每一次迭代,我们当然希望F(x)的值降得越快越好,这样我们就能更快速得获得函数的最小值。因此,步长tk的选择很重要。
如果步长tk太小,则找到最小值的迭代次数非常多,即迭代速度非常慢,或者说迭代的收敛速度很慢;而步长太大的话,则会出现overshoot the minimum的现象,即不断在最小值左右徘徊,跳来跳去的,如下图所示:

然而,tk最后还是作用在xk-1上,得到xk。因此,更为朴素的思想应该是:序列{xk}的个数尽可能小,即每一次迭代步伐尽可能大,函数值减少得尽可能多。那么就是关于序列{xk}的选择了,如何更好的选择每一个点xk,使得函数值更快的趋近其最小值。
ISTA和FISTA求解最小化问题的思想就是基于梯度下降法的,它们的优化在于对{xk}的选择上。这里我们不讲证明,只讲思想。想看证明的话,请看参考资料[1]。
下面来讲ISTA(Iterative shrinkage-thresholding algorithm),即迭代阈值收缩算法。
先从无约束的优化问题开始,即上面的式子(5):

这时候,我们还假设了f(x)满足Lipschitz连续条件,即f(x)的导数有下界,其最小下界称为Lipschitz常数L(f)。这时,对于任意的L>=L(f),有:
(7)
基于此,在点xk附近可以把函数值近似为:
(8)
在梯度下降的每一步迭代中,将点xk-1处的近似函数取得最小值的点作为下一次迭代的起始点xk,这就是所谓的proximal regularization算法(其中,tk=1/L)。
(9)
上面的方法只适合解决非约束问题。而ISTA要解决的可是带惩罚项的优化问题,引入范数规范化函数g(x)对参数x进行约束,如下:
(10)
使用更为一般的二次近似模型来求解上述的优化问题,在点y,F(x) := f(x) + g(x)的二次近似函数为:
(11)
该函数的最小值表示为:
(12)
忽略其常数项f(y)和∇F(y),结合式子(11)和(12),PL(y)可以写成:
(13)
显然,使用ISTA解决带约束的优化问题时的基本迭代步骤为:
(14)
固定步长的ISTA的基本迭代步骤如下(步长t = 1/L(f)):

然而,固定步长的ISTA的缺点是:Lipschitz常数L(f)不一定可知或者可计算。例如,L1范数约束的优化问题,其Lipschitz常数依赖于ATA的最大特征值。而对于大规模的问题,非常难计算。因此,使用以下带回溯(backtracking)的ISTA:

理论证明:ISTA的收敛速度为O(1/k);而FISTA的收敛速度为O(1/k2)。实际应用中,FISTA亦明显快于ISTA。其证明过程还是看这篇文章:[1]。
FISTA与ISTA的区别在于迭代步骤中近似函数起始点y的选择。ISTA使用前一次迭代求得的近似函数最小值点xk-1,而FISTA则使用另一种方法来计算y的位置。理论证明,其收敛速度能够达到O(1/k2)。固定步长的FISTA的基本迭代步骤如下:

当然,考虑到与ISTA同样的问题:问题规模大的时候,决定步长的Lipschitz常数计算复杂。FISTA与ISTA一样,亦有其回溯算法。在这个问题上,FISTA与ISTA并没有区别,上面也说了,FISTA与ISTA的区别仅仅在于每一步迭代时近似函数起始点的选择。更加简明的说:FISTA用一种更为聪明的办法选择序列{xk},使得其基于梯度下降思想的迭代过程更加快速地趋近问题函数F(x)的最小值。
带回溯的FISTA算法基本迭代步骤如下:

值得注意的是,在每一步迭代中,计算近似函数的起止点时,FISTA使用前两次迭代过程的结果xk-1,xk-1,对其进行简单的线性组合生成下一次迭代的近似函数起始点yk。方法很简单,但效果却非常好。当然,这也是有理论支持的。
FISTA算法就介绍到这里啦!如果有什么讲的不够明白的地方,还希望各位看客指点。
从梯度下降到Fista的更多相关文章
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 为什么是梯度下降?SGD
在机器学习算法中,为了优化损失函数loss function ,我们往往采用梯度下降算法来进行优化.举个例子: 线性SVM的得分函数和损失函数分别为: ...
- Stanford大学机器学习公开课(二):监督学习应用与梯度下降
本课内容: 1.线性回归 2.梯度下降 3.正规方程组 监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案 1.线性回归 问题引入:假设有一房屋销售的数据如下: 引 ...
- Matlab梯度下降解决评分矩阵分解
for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,: ...
- 机器学习(一):梯度下降、神经网络、BP神经网络
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...
- 梯度下降之随机梯度下降 -minibatch 与并行化方法
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y ...
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
随机推荐
- java web学习总结(二) -------------------TOMCAT使用帮助(一)
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
- java语言中Object转为String的几种形式
在java项目的实际开发和应用中,常常需要用到将对象转为String这一基本功能.本文将对常用的转换方法进行一个总结.常用的方法有Object.toString(),(String)要转换的对象,St ...
- SharePoint 2013 入门教程之创建页面布局及页面
在SharePoint的使用过程中,页面布局和页面时很重要的两个概念,主要用于数据个性化展示,下面,我们简单介绍一下SharePoint的页面布局和页面的个性化. 一. SharePoint页面模型概 ...
- 谈谈Fragment中的onActivityResult
大家或许有遇到这个神坑,在Fragment中使用startActivityForResult能够成功,可是在Fragment中的onActivityResult却无法被调用.一不注意就让人一夜愁白了头 ...
- Object-C关于GCD多线程的使用
```objc1 使用Crearte函数创建的并发队列和全局并发队列的主要区别: 1)全局并发队列在整个应用程序中本身是默认存在的并且对应有高优先级.默认优先级.低优先级和后台优先级一共四个并发队列, ...
- Git 工作流程
Git 作为一个源码管理系统,不可避免涉及到多人协作. 协作必须有一个规范的工作流程,让大家有效地合作,使得项目井井有条地发展下去.”工作流程”在英语里,叫做”workflow”或者”flow”,原意 ...
- Windows 10 IoT Serials 2 - Windows 10 IoT RTM 升级教程
7月29日,微软推出了Windows 10 for PC的正式版,其版本号是Build 10240.近两天官方说已经有4700万的下载安装量,同时这个数字还在不断攀升.另外,除了Windows 10 ...
- ORACLE等待事件:enq: TX - row lock contention
enq: TX - row lock contention等待事件,这个是数据库里面一个比较常见的等待事件.enq是enqueue的缩写,它是一种保护共享资源的锁定机制,一个排队机制,先进先出(FIF ...
- 搭建自己的PHP框架心得(一)
h2:first-child, body>h1:first-child, body>h1:first-child+h2, body>h3:first-child, body>h ...
- 内存管理内幕mallco及free函数实现
原文:https://www.ibm.com/developerworks/cn/linux/l-memory/ 为什么必须管理内存 内存管理是计算机编程最为基本的领域之一.在很多脚本语言中,您不必担 ...