Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
概
以往的\(\ell_1\)攻击, 为了保证
\]
其是通过两步投影的方式完成的, 即
\]
其中\(B_1\)表示1范数球, 而\(H\)表示\([0, 1]^d\)的空间.
本文直接
\]
主要内容
上图展示了1范数球和\(S\), 可以发现, 差别还是很大的.
正因如此, 和\(\ell_{\infty}, \ell_2\)不同, 基于二步投影的\(\ell_1\)攻击非常低效.
于是乎, 作者直接投影到\(S\), 即考虑如下的优化问题:
\mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d.
\]
不妨令\(\tilde{w} = z - x\), 则
\mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d.
\]
再令\(w = \mathrm{sign}(u-x) \tilde{w}\), 此时有
\mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d.
\]
显然, \(w\)非负(否则徒增消耗罢了).
为此, 我们可以归结为上述问题为下述类型问题:
\mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d.
\]
约束条件可以进一步改写为
z_i \in [0, \gamma_i], \\
\gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}.
\]
注: 这是从这篇论文中学到的一个很有趣的技巧:
& a \le \mathrm{sign}(u)z + x \le b \\
\Leftrightarrow&
\mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\
or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\
\Leftrightarrow&
z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)].
\end{array}
\]
下面通过拉格朗日乘子法求解(既然是个凸问题, 假设\(\gamma > 0\)):
\]
由此可得KKT条件:
\lambda (\sum_i z_i - \epsilon) = 0; \\
\alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\
\lambda, \alpha_i, \beta_i \ge 0.
\]
故
\]
我们再来具体分析:
1.
\Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0.
\]
故
\]
\]
故
\]
于是
\begin{array}{ll}
0, & \lambda > |u_i| \\
|u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\
\gamma_i, & \lambda < |u_i| - \gamma_i.
\end{array}
\right .
\]
其中\(\lambda\)是下列方程的解:
\]
其有一个特殊的表达方式:
\]
故
\]
若\(\lambda=0\)时:
\]
则此时\(\lambda=0\)恰为最优解, 否则需要通过
\]
求解出\(\lambda\).
因为\(\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))\)关于\(\lambda\)是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).
除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.
作者关于\(\ell\)攻击的分析感觉很通透, 不错的文章啊.
Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers的更多相关文章
- Defending Adversarial Attacks by Correcting logits
目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Adversarial Examples Are Not Bugs, They Are Features
目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
- Adversarial Examples Improve Image Recognition
Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vis ...
随机推荐
- 学习java 7.20
学习内容: Stream流 Stream流的生成方式 中间操作方法 终结操作方法 Stream流的收集操作 类加载 类加载器的作用 将.class文件加载到内存中,并为之生成对应的java.lang. ...
- 15. Linux提取RPM包文件(cpio命令)详解
在讲解如何从 RPM 包中提取文件之前,先来系统学习一下 cpio 命令.cpio 命令用于从归档包中存入和读取文件,换句话说,cpio 命令可以从归档包中提取文件(或目录),也可以将文件(或目录)复 ...
- SpringCloud微服务服务间调用之OpenFeign介绍
开发微服务,免不了需要服务间调用.Spring Cloud框架提供了RestTemplate和FeignClient两个方式完成服务间调用,本文简要介绍如何使用OpenFeign完成服务间调用. Op ...
- 基于jar的Spring Boot工程
一.Spring Boot简介 Spring Boot是由Pivotal[ˈpɪvətl]团队(一家做大数据的公司)提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架 ...
- C# 枚举的flags 标志位应用
枚举有个特性叫标志位,使用方法如下 [Flags] enum Foo { a =1, b = 2, c = 4, d = 8 } 每个值需要为2的n次方,保证多个值的组合不会重复. 这样在判断其中一个 ...
- 使用MyBatis框架时发现的一些小bug
在大配置MyBatis.xml中: 不能有空节点属性 ,否则启动服务器后点击登录没有反应. 异常问题: ause: java.sql.SQLException: Value '0000-00-00 ...
- Charles ios设备抓包
在Mac下做开发,用Fiddler抓包由于离不开Windows比较痛苦,还好有Charles,到官网http://www.charlesproxy.com/可下载到最新版本(若不支持rMBP可拖到Re ...
- mysql的事务详解
事务及其ACID属性 事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性. 原子性(Atomicity) :事务是一个原子操作单元,其对数据的修改,要么全都执 ...
- [BUUCTF]REVERSE——[MRCTF2020]Xor
[MRCTF2020]Xor 附件 步骤: 例行检查,32位程序,无壳 32位ida载入,首先检索程序里的字符串,根据字符串的提示,跳转到程序的关键函数 根据flag,跳转到sub_401090函数 ...
- CVE 2021-44228 Log4j-2命令执行复现及分析
12月11日:Apache Log4j2官方发布了2.15.0 版本,以修复CVE-2021-44228.虽然 2.15.0 版本解决了Message Lookups功能和JNDI 访问方式的问题,但 ...