Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
概
以往的\(\ell_1\)攻击, 为了保证
\]
其是通过两步投影的方式完成的, 即
\]
其中\(B_1\)表示1范数球, 而\(H\)表示\([0, 1]^d\)的空间.
本文直接
\]
主要内容

上图展示了1范数球和\(S\), 可以发现, 差别还是很大的.
正因如此, 和\(\ell_{\infty}, \ell_2\)不同, 基于二步投影的\(\ell_1\)攻击非常低效.
于是乎, 作者直接投影到\(S\), 即考虑如下的优化问题:
\mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d.
\]
不妨令\(\tilde{w} = z - x\), 则
\mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d.
\]
再令\(w = \mathrm{sign}(u-x) \tilde{w}\), 此时有
\mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d.
\]
显然, \(w\)非负(否则徒增消耗罢了).
为此, 我们可以归结为上述问题为下述类型问题:
\mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d.
\]
约束条件可以进一步改写为
z_i \in [0, \gamma_i], \\
\gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}.
\]
注: 这是从这篇论文中学到的一个很有趣的技巧:
& a \le \mathrm{sign}(u)z + x \le b \\
\Leftrightarrow&
\mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\
or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\
\Leftrightarrow&
z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)].
\end{array}
\]
下面通过拉格朗日乘子法求解(既然是个凸问题, 假设\(\gamma > 0\)):
\]
由此可得KKT条件:
\lambda (\sum_i z_i - \epsilon) = 0; \\
\alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\
\lambda, \alpha_i, \beta_i \ge 0.
\]
故
\]
我们再来具体分析:
1.
\Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0.
\]
故
\]
\]
故
\]
于是
\begin{array}{ll}
0, & \lambda > |u_i| \\
|u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\
\gamma_i, & \lambda < |u_i| - \gamma_i.
\end{array}
\right .
\]
其中\(\lambda\)是下列方程的解:
\]
其有一个特殊的表达方式:
\]
故
\]
若\(\lambda=0\)时:
\]
则此时\(\lambda=0\)恰为最优解, 否则需要通过
\]
求解出\(\lambda\).
因为\(\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))\)关于\(\lambda\)是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).
除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.
作者关于\(\ell\)攻击的分析感觉很通透, 不错的文章啊.
Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers的更多相关文章
- Defending Adversarial Attacks by Correcting logits
目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Adversarial Examples Are Not Bugs, They Are Features
目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
- Adversarial Examples Improve Image Recognition
Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vis ...
随机推荐
- 在idea的java开发中字符串length()方法获取长度与赋值不符的问题
最近在开发中用到length()方法获取中文字符串的长度,发现获得的长度与实际不符.比如个String类型赋值为"中",但获取长度却是2. 这让我百思不得其解,后来突然想起来我在研 ...
- 最长公共子序列问题(LCS) 洛谷 P1439
题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...
- @Transactional注解详细使用
一.@Transactional 注解使用 @Transactional 注解只能用在public 方法上,如果用在protected或者private的方法上,不会报错,但是该注解不会生效. @T ...
- 【编程思想】【设计模式】【创建模式creational】lazy_evaluation
Python版 https://github.com/faif/python-patterns/blob/master/creational/lazy_evaluation.py #!/usr/bin ...
- Java 使用slf4j记录日志
引入依赖 <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12< ...
- 捷码:重塑DevOps,打造更流畅紧密的开发与服务交付业务链
捷码Gemcoder 1周前如果有机会安排一场行业吐槽大会,熟悉软件开发.交付.服务业务各环节的业内人士,对开发中的各种扯皮.交付反反复复.运维服务中的提心吊胆,往往会有很多深刻的体验和刻骨铭心的案例 ...
- Nginx支持php
目录 一.简介 二.配置 三.测试 四.参数 一.简介 Nginx本身只能解析html文件,但有些网页是php写的,就需要Nginx连接php,将网页解析成html再发给客户端. 配置中将.php 结 ...
- HGAME2021 week3 pwn writeup
一共放出五道题,都不是很难. blackgive 考栈转移,值得注意的一点是转移过去先填充几个ret,因为如果直接在转移过去的地方写rop链,执行起来会覆盖到上面的一些指针,导致程序不能正常输入和输出 ...
- mapbox获取各种经纬度
点击地图即可获取经纬度,也可以手动输入经纬度来换算 在线查看运行效果 实现方法 mapbox中通过地图点击事件来获取到坐标,然后转换为其他的坐标系并输出在屏幕上即可 获取坐标 方法很简单,给地图添加一 ...
- CF127A Wasted Time 题解
Content 平面上有 \(A_1(x_1,y_1),A_2(x_2,y_2),...,A_n(x_n,y_n)\) 共计 \(n\) 个点.你需要依次将 \(A_1\) 连接至 \(A_2\),\ ...