目录

Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image classifiers. In International Conference on Machine Learning (ICML), 2021.

以往的\(\ell_1\)攻击, 为了保证

\[\|x' - x\|_1 \le \epsilon, x' \in [0, 1]^d,
\]

其是通过两步投影的方式完成的, 即

\[x' = P_H \circ P_{B_1 (x; \epsilon)} (u).
\]

其中\(B_1\)表示1范数球, 而\(H\)表示\([0, 1]^d\)的空间.

本文直接

\[x' = P_S (u), \: S := H \bigcap B_1 (x; \epsilon).
\]

主要内容

上图展示了1范数球和\(S\), 可以发现, 差别还是很大的.

正因如此, 和\(\ell_{\infty}, \ell_2\)不同, 基于二步投影的\(\ell_1\)攻击非常低效.

于是乎, 作者直接投影到\(S\), 即考虑如下的优化问题:

\[\min_{z} \: \|z - u\|_2^2 \\
\mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d.
\]

不妨令\(\tilde{w} = z - x\), 则

\[\min_{\tilde{w}} \: \|\tilde{w} - (u - x)\|_2^2 \\
\mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d.
\]

再令\(w = \mathrm{sign}(u-x) \tilde{w}\), 此时有

\[\min_{w} \: \|w - |u - x|\|_2^2 \\
\mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d.
\]

显然, \(w\)非负(否则徒增消耗罢了).

为此, 我们可以归结为上述问题为下述类型问题:

\[\min_{z} \: \frac{1}{2}\|z - |u|\|_2^2 \\
\mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d.
\]

约束条件可以进一步改写为

\[\sum_i z_i \le \epsilon, \\
z_i \in [0, \gamma_i], \\
\gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}.
\]

注: 这是从这篇论文中学到的一个很有趣的技巧:

\[\begin{array}{ll}
& a \le \mathrm{sign}(u)z + x \le b \\
\Leftrightarrow&
\mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\
or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\
\Leftrightarrow&
z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)].
\end{array}
\]

下面通过拉格朗日乘子法求解(既然是个凸问题, 假设\(\gamma > 0\)):

\[\mathcal{L}(z;\lambda; \alpha; \beta) = \frac{1}{2} \|z - |u|\|_2^2 + \lambda (\sum_i z_i - \epsilon) - \alpha^Tz + \beta^T (z - \gamma).
\]

由此可得KKT条件:

\[\nabla_{z_i}\mathcal{L} = (z_i - |u_i|) + \lambda - \alpha_i + \beta_i = 0; \\
\lambda (\sum_i z_i - \epsilon) = 0; \\
\alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\
\lambda, \alpha_i, \beta_i \ge 0.
\]

\[z_i = |u_i| - \lambda + \alpha_i - \beta_i.
\]

我们再来具体分析:

1.

\[\beta_i \not = 0
\Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0.
\]

\[\beta_i = \max(0, |u_i| - \gamma_i - \lambda).
\]
\[\alpha_i \not = 0 \Rightarrow z_i = 0 \Rightarrow \beta_i = 0.
\]

\[\alpha_i = \max(0, \lambda - |u_i|).
\]

于是

\[z_i=\left\{
\begin{array}{ll}
0, & \lambda > |u_i| \\
|u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\
\gamma_i, & \lambda < |u_i| - \gamma_i.
\end{array}
\right .
\]

其中\(\lambda\)是下列方程的解:

\[\lambda (\sum_i z_i - \epsilon) = 0.
\]

其有一个特殊的表达方式:

\[z_i = \max(0, \min(\gamma_i, |u_i| - \lambda)).
\]

\[\lambda (\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) - \epsilon) = 0.
\]

若\(\lambda=0\)时:

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) \le \epsilon,
\]

则此时\(\lambda=0\)恰为最优解, 否则需要通过

\[\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) = \epsilon,
\]

求解出\(\lambda\).

因为\(\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))\)关于\(\lambda\)是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).

除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.

作者关于\(\ell\)攻击的分析感觉很通透, 不错的文章啊.

Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers的更多相关文章

  1. Defending Adversarial Attacks by Correcting logits

    目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...

  2. DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS

    目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  5. Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...

  6. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  7. Adversarial Examples Are Not Bugs, They Are Features

    目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...

  8. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

  9. Adversarial Examples Improve Image Recognition

    Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vis ...

随机推荐

  1. HDFS06 DataNode

    DataNode 目录 DataNode DataNode工作机制 数据完整性 DataNode掉线时限参数设置 DataNode工作机制 一个数据块在DataNode上以文字形式存储在磁盘上,包括一 ...

  2. 1小时学会Git玩转GitHub

    版权声明:原创不易,本文禁止抄袭.转载,侵权必究! 本次教程建议一边阅读一边用电脑实操 目录 一.了解Git和Github 1.1 什么是Git 1.2 什么是版本控制系统 1.3 什么是Github ...

  3. Linux基础命令---mailq显示邮件队列

    mailq mailq指令可以显示出待发送的邮件队列. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法       mailq   2.选项参数列表 ...

  4. Can we use function on left side of an expression in C and C++?

    In C, it might not be possible to have function names on left side of an expression, but it's possib ...

  5. OSGI 生命周期

    1 生命周期管理 对于非模块化应用,生命周期将应用作为一个整体来操作: 而对于模块化应用,则可以以细粒度的方式来管理应用的某一个独立部分. OSGi生命周期管理 OSGi生命周期层有两种不同的作用: ...

  6. vue 键盘事件keyup/keydoen

    使用: <!DOCTYPE html> <html> <head> <title></title> <meta charset=&qu ...

  7. JSP 文字乱码、${}引用无效

    问题: 代码:<form action="/test/requestPost.do" method="post"> <input type=& ...

  8. java多线程并发编程中的锁

    synchronized: https://www.cnblogs.com/dolphin0520/p/3923737.html Lock:https://www.cnblogs.com/dolphi ...

  9. dart系列之:实时通讯,在浏览器中使用WebSockets

    目录 简介 dart:html中的WebSockets 创建一个WebSocket WebSocket的状态 发送消息 处理WebSocket事件 总结 简介 web客户端和服务器端通信有两种方式,一 ...

  10. [BUUCTF]REVERSE——Youngter-drive

    Youngter-drive 附件 步骤: 例行查壳儿,32位程序,upx壳儿 利用网上找的upx脱壳儿工具脱完壳扔进ida,首先检索程序里的字符串,发现了有关flag的字样,跟进,当source=T ...