Neville 插值方法
简介
wikipedia: Neville's method
在数学上,Neville 算法是一种计算插值多项式方法,由数学家Eric Harold Neville提出。由给定的n+1个节点,存在一个唯一的幂次≤n的多项式存在,并且通过给定点。
算法
给定n+1个节点及其对应函数值 \((x_i, y_i)\),假设 \(P_{i,j}\) 表示 \(j-i\) 阶多项式,并且满足通过节点 \((x_k, y_k) \quad k =i, i+1, \cdots, j\)。\(P_{i,j}\) 满足以下迭代关系
\begin{aligned}
& p_{i,i}(x) = y_i \cr
& P_{i,j}(x) = \frac{(x_j - x)p_{i,j-1}(x) + (x - x_i)p_{i+1,j}(x)}{x_j - x_i}, \quad 0\le i\le j \le n
\end{aligned}
\end{eqnarray}\]
以n=4的节点举例,其迭代过程为
\begin{aligned}
& p_{1,1}(x) = y_1, \cr
& p_{2,2}(x) = y_2, p_{1,2}(x), \cr
& p_{3,3}(x) = y_3, p_{2,3}(x), p_{1,3}(x),\cr
& p_{4,4}(x) = y_4, p_{3,4}(x), p_{2,4}(x), p_{1,4}(x)\cr
\end{aligned}
\end{eqnarray}\]
代码
伪代码
- 由于计算插值点为一向量,为避免过多层循环嵌套,将每个 \(P_{i,j}\) 都改写为向量形式,各元素分别储存多项式在插值点 \(x_0\) 处函数值。
- 只有每次当一列 \(P_{i,j}\) 计算完后,才能利用迭代公式计算下一列 \(P_{i,j}\) 多项式,因此外层循环为计算每列 \(P_{i,j}\) 多项式。
- 每列 \(P_{i,j}\) 个数是逐渐减少的,最开始有n个多项式,最终循环只有一个。
可将矩阵P[nRow,nCol]用于存储多项式 \(P_{i,j}(x)\)。其中每行为 \(P_{i,j}(x_k)\) 在 nCol 个插值点\(x_k\)处函数值。每次外层循环 \(P_{i,j}(x)\) 个数减少,此时从最后一行开始舍弃,每次只循环
for irow = 1: (nRow - icol) %
\(x_i\)与\(x_j\)分别用变量x1与x2代替。迭代公式可表示为
for icol = 1:nRow - 1
for irow = 1: (nRow - icol) %
x1 = nodes(irow); x2 = nodes(irow + icol);
P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
end% for
end% for
最终完整代码为
function evalPol = f1300000_Neville(x0, nodes, fnodes)
% Implement Neville's algorithm to evaluate interpolation polynomial at x0
% Input:
% x0 - the point where we want to evaluate the polynomial
% nodes - vector containing the interpolation nodes
% fnodes - vector containing the values of the function
% Output:
% evalPol - vector containing the value at x0 of the different
% the interpolating polynomials
if iscolumn(x0)
x0 = x0'; % transfer to row vector
end
if isrow(fnodes)
fnodes = fnodes';
end
nCol = length(x0);
nRow = length(nodes);
% P = zeros(nRow, nCol);
P = repmat(fnodes, 1, nCol);
for icol = 1:nRow - 1
for irow = 1: (nRow - icol) %
x1 = nodes(irow); x2 = nodes(irow + icol);
P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
end% for
end% for
evalPol = P(1,:);
end
Neville 插值方法的更多相关文章
- 数值分析之Neville's Algorithm
Neville插值方法详解 牛顿的插值方法涉及两个步骤:计算系数,随后评估多项式. 如果插值运作良好使用相同的多项式在x的不同值处重复执行. 要是一点是内插,一种单步计算插值的方法,如Nevi ...
- vue 改变插值方法
Vue默认的插值是双大括号{{}}.但有时我们会有需求更改这个插值的形式. delimiters:['${','}'] //必须要用一个数组来接收,用逗号隔开.
- 插值方法 - Newton向前向后等距插值
通常我们在求插值节点的开头部分插值点附近函数值时,使用Newton前插公式:求插值节点的末尾部分插值点附近函数值时,使用Newton后插公式. 代码: 1 # -*- coding: utf-8 -* ...
- 插值方法 - Newton多项式(非等距节点)
不多话.Nowton插值多项式(非等距节点)代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Mar 25 15: ...
- 插值方法 - Lagrange插值多项式
Lagrange插值多项式代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Mar 25 15:43:42 202 ...
- C#与C++的发展历程第四 - C#6的新时代
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- 分段二次插值——用Python进行数值计算
事实上在实际使用中,高次插值显然是很不适合的,高次插值将所有样点包涵进一个插值函数中,这是次幂高的原因.高次计算复杂,而且刚开始的一点误差会被方的很大.因此将整个区间分为若干个小区间,在每一个小区间进 ...
- Matlab插值函数
x=0:2*pi; y=sin(x); xx=0:0.5:2*pi; %interp1对sin函数进行分段线性插值,调用interp1的时候,默认的是分段线性插值 y1=interp1(x,y,xx) ...
- 线性插值&双线性插值&三线性插值
http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方 ...
随机推荐
- Java:Iterator接口与fail-fast小记
Java:Iterator接口与fail-fast小记 对 Java 中的 Iterator接口 和 fail-fast,做一个微不足道的小小小小记 Iterator Iterator接口 Itera ...
- P2120 [ZJOI2007]仓库建设
P2120 [ZJOI2007]仓库建设 怎么说呢?算是很水的题了吧... 只要不要一开始就把dp想错就行... #include<bits/stdc++.h> #define ll lo ...
- Git 极速上手(超简单)
前言:本文主要介绍了一种快速入门使用Git的方法,通过四步完成本地仓库构建和推送到远程仓库(Github.Gitee码云),简单说明最常用的命令,不需要明白Git的原理即可使用,本文不介绍具体原理. ...
- 策略路由——使用Router-Policy策略路由进行路由协议的引入
1.实验目的:实现R3-R2-R1为访问主线路,R3-R4-R1为访问备份线路 2.实验拓扑及IP,如图; 3.基本配置(端口IP) R1: <Huawei>sys[Huawei]sys ...
- ELK集群之kibana(4)
kibane安装及基础使用 Kibana的安装 Kibana包含前端展示.es操作简化 yum localinstall kibana-7.6.2-x86_64.rpm -y Kibana配置修改ki ...
- k8s入坑之路(16)kubernetes中CICD/基于宿主机jenkins
cicd的结合组件 需要代码仓库如gitlab.github.包构建工具Maven等,持续集成工具如jenkins,github/cicd.结合自己脚本实现重复式任务自动化. 传统服务发布流程: 提交 ...
- Git+windows安装教程(一)
一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...
- JMeter学习笔记--函数学习(_csvRead 函数)
JMeter函数可以很方便实现一些小功能,几乎可以用于测试计划中的任何元件.一个函数的调用如下:${_functionName(var1,var2,var3)},_functionName匹配函数名, ...
- @RequestAttribute与@MatrixVariable
@RequestAttribute 它只能使用在方法入参上,从request请求参数中获取对应的属性值. //路径跳转 @GetMapping("/goto") public St ...
- JavaScript 对象:String & Array 及其常见应用
String对象 split 功能:把字符串分割为字符串数组.官方文档已经描述的够清楚,不多赘述.主要说一下需要注意的情况以及应用 1.省略分割参数 var str="How are you ...