简介

wikipedia: Neville's method

在数学上,Neville 算法是一种计算插值多项式方法,由数学家Eric Harold Neville提出。由给定的n+1个节点,存在一个唯一的幂次≤n的多项式存在,并且通过给定点。

算法

给定n+1个节点及其对应函数值 \((x_i, y_i)\),假设 \(P_{i,j}\) 表示 \(j-i\) 阶多项式,并且满足通过节点 \((x_k, y_k) \quad k =i, i+1, \cdots, j\)。\(P_{i,j}\) 满足以下迭代关系

\[\begin{eqnarray}
\begin{aligned}
& p_{i,i}(x) = y_i \cr
& P_{i,j}(x) = \frac{(x_j - x)p_{i,j-1}(x) + (x - x_i)p_{i+1,j}(x)}{x_j - x_i}, \quad 0\le i\le j \le n
\end{aligned}
\end{eqnarray}\]

以n=4的节点举例,其迭代过程为

\[\begin{eqnarray}
\begin{aligned}
& p_{1,1}(x) = y_1, \cr
& p_{2,2}(x) = y_2, p_{1,2}(x), \cr
& p_{3,3}(x) = y_3, p_{2,3}(x), p_{1,3}(x),\cr
& p_{4,4}(x) = y_4, p_{3,4}(x), p_{2,4}(x), p_{1,4}(x)\cr
\end{aligned}
\end{eqnarray}\]

代码

伪代码

  • 由于计算插值点为一向量,为避免过多层循环嵌套,将每个 \(P_{i,j}\) 都改写为向量形式,各元素分别储存多项式在插值点 \(x_0\) 处函数值。
  • 只有每次当一列 \(P_{i,j}\) 计算完后,才能利用迭代公式计算下一列 \(P_{i,j}\) 多项式,因此外层循环为计算每列 \(P_{i,j}\) 多项式。
  • 每列 \(P_{i,j}\) 个数是逐渐减少的,最开始有n个多项式,最终循环只有一个。

可将矩阵P[nRow,nCol]用于存储多项式 \(P_{i,j}(x)\)。其中每行为 \(P_{i,j}(x_k)\) 在 nCol 个插值点\(x_k\)处函数值。每次外层循环 \(P_{i,j}(x)\) 个数减少,此时从最后一行开始舍弃,每次只循环

for irow = 1: (nRow - icol) %

\(x_i\)与\(x_j\)分别用变量x1与x2代替。迭代公式可表示为

for icol = 1:nRow - 1
for irow = 1: (nRow - icol) %
x1 = nodes(irow); x2 = nodes(irow + icol);
P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
end% for
end% for

最终完整代码为

function evalPol = f1300000_Neville(x0, nodes, fnodes)
% Implement Neville's algorithm to evaluate interpolation polynomial at x0
% Input:
% x0 - the point where we want to evaluate the polynomial
% nodes - vector containing the interpolation nodes
% fnodes - vector containing the values of the function
% Output:
% evalPol - vector containing the value at x0 of the different
% the interpolating polynomials if iscolumn(x0)
x0 = x0'; % transfer to row vector
end if isrow(fnodes)
fnodes = fnodes';
end nCol = length(x0);
nRow = length(nodes); % P = zeros(nRow, nCol);
P = repmat(fnodes, 1, nCol); for icol = 1:nRow - 1
for irow = 1: (nRow - icol) %
x1 = nodes(irow); x2 = nodes(irow + icol);
P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
end% for
end% for evalPol = P(1,:);
end

Neville 插值方法的更多相关文章

  1. 数值分析之Neville's Algorithm

        Neville插值方法详解 牛顿的插值方法涉及两个步骤:计算系数,随后评估多项式. 如果插值运作良好使用相同的多项式在x的不同值处重复执行. 要是一点是内插,一种单步计算插值的方法,如Nevi ...

  2. vue 改变插值方法

    Vue默认的插值是双大括号{{}}.但有时我们会有需求更改这个插值的形式. delimiters:['${','}']  //必须要用一个数组来接收,用逗号隔开.

  3. 插值方法 - Newton向前向后等距插值

    通常我们在求插值节点的开头部分插值点附近函数值时,使用Newton前插公式:求插值节点的末尾部分插值点附近函数值时,使用Newton后插公式. 代码: 1 # -*- coding: utf-8 -* ...

  4. 插值方法 - Newton多项式(非等距节点)

    不多话.Nowton插值多项式(非等距节点)代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Mar 25 15: ...

  5. 插值方法 - Lagrange插值多项式

    Lagrange插值多项式代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Mar 25 15:43:42 202 ...

  6. C#与C++的发展历程第四 - C#6的新时代

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

  7. 分段二次插值——用Python进行数值计算

    事实上在实际使用中,高次插值显然是很不适合的,高次插值将所有样点包涵进一个插值函数中,这是次幂高的原因.高次计算复杂,而且刚开始的一点误差会被方的很大.因此将整个区间分为若干个小区间,在每一个小区间进 ...

  8. Matlab插值函数

    x=0:2*pi; y=sin(x); xx=0:0.5:2*pi; %interp1对sin函数进行分段线性插值,调用interp1的时候,默认的是分段线性插值 y1=interp1(x,y,xx) ...

  9. 线性插值&双线性插值&三线性插值

    http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方 ...

随机推荐

  1. 【数据结构与算法Python版学习笔记】引言

    学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...

  2. 【数据结构与算法Python版学习笔记】树——二叉查找树 Binary Search Tree

    二叉搜索树,它是映射的另一种实现 映射抽象数据类型前面两种实现,它们分别是列表二分搜索和散列表. 操作 Map()新建一个空的映射. put(key, val)往映射中加入一个新的键-值对.如果键已经 ...

  3. 基于websocket实现的一个简单的聊天室

    本文是基于websocket写的一个简单的聊天室的例子,可以实现简单的群聊和私聊.是基于websocket的注解方式编写的.(有一个小的缺陷,如果用户名是中文,会乱码,不知如何处理,如有人知道,请告知 ...

  4. 攻防世界 杂项 1.base64÷4

    666C61677B45333342374644384133423834314341393639394544444241323442363041417D 根据题目base64÷4得base16 在线工 ...

  5. N 种仅仅使用 HTML/CSS 实现各类进度条的方式

    本文将介绍如何使用 HTML/CSS 创建各种基础进度条及花式进度条及其动画的方式,通过本文,你可能可以学会: 通过 HTML 标签 <meter> 创建进度条 通过 HTML 标签 &l ...

  6. 重装系统——联想window 10

    大四了,读了四年大学,唉,混的,啥也不会,工作也找不到,真的不知道这大学四年到底干了什么.专业是计算机方向的,但居然,不敢,也不会装电脑系统,大学四年的文件都是乱放的,更那个的是,有些软件卸载不完全, ...

  7. 攻防世界 Misc 新手练习区 如来十三掌 Writeup

    攻防世界 Misc 新手练习区 如来十三掌 Writeup 题目介绍 题目考点 佛曰加密.base64.Rot13等加密方法的了解 Writeup 下载并打开附件 联想到佛曰加密,复制内容到 佛曰加密 ...

  8. Django 中间件 详细总结

    一.什么是中间件 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影 ...

  9. C#简单配置类及数据绑定

    目录 简介 配置基类 派生配置类 数据绑定 Winform中的数据绑定 WPF下的数据绑定 附件 简介 本文实现一个简单的配置类,原理比较简单,适用于一些小型项目.主要实现以下功能: 保存配置到jso ...

  10. Python进阶(装饰器)

    from datetime import datetime def log(func):#func表示装饰器作用于的函数 def wrapper(*args,**kw):#wrapper返回装饰器作用 ...