You are given an integer array of unique positive integers nums. Consider the following graph:

  • There are nums.length nodes, labeled nums[0] to nums[nums.length - 1],
  • There is an undirected edge between nums[i] and nums[j] if nums[i] and nums[j] share a common factor greater than 1.

Return the size of the largest connected component in the graph.

  Example 2:

  Input: nums = [20,50,9,63]
  Output: 2
  这道题的含义是,对于一串数字,如果两两之间存在相同的大于1的的公因子,则这两个数可以当作为一组,同时如果A与B有大于1的公因子,B与C有大于1的公因子,则A、B、C可以当作一组,此时长度就是3,
这道题虽然是求Graph的长度,但按照上述的分析来看,其实就是将数组元素分组,然后求同一类元素的个数,对于这种题目优先考虑使用并查集。
  并查集讲解帖子,对于一个并查集,主要做两步,Union 以及find。一般最简单的并查集包含以下几个步骤:
1) 初始化
  假如有编号为1, 2, 3, ..., n的n个元素,我们用一个数组fa[]来存储每个元素的父节点(因为每个元素有且只有一个父节点,所以这是可行的)。一开始,我们先将它们的父节点设为自己。
int fa[MAXN];
void init(int n)
{
for (int i = 1; i <= n; ++i)
fa[i] = i;
}

 2)查询

  用递归的写法实现对代表元素的查询:一层一层访问父节点,直至根节点(根节点的标志就是父节点是本身)。要判断两个元素是否属于同一个集合,只需要看它们的根节点是否相同即可。

int find(int x)
{
if(fa[x] == x)
return x;
else
return find(fa[x]);
}

 对于这个一般可以路径压缩

int find(int x)
{
if(x == fa[x])
return x;
else{
fa[x] = find(fa[x]); //父节点设为根节点
return fa[x]; //返回父节点
}
}

  以上代码常常简写为一行:

int find(int x)
{
return x == fa[x] ? x : (fa[x] = find(fa[x]));
}

3)合并

       两个不同的元素置为相同的父节点。合并操作也是很简单的,先找到两个集合的代表元素,然后将前者的父节点设为后者即可。

inline void merge(int i, int j)
{
fa[find(i)] = find(j);
}

4) 本题思路

  按照上述并查集的构建思路,对于所有元素,初始化一个数组用于存储当前元素和哪些元素通过公因子构成一组,然后统计每一组的元素个数,返回最大的个数值。
class Solution {
public:
int largestComponentSize(vector<int>& A) {
int n = 0, mx = 0, res = 0;
unordered_map<int, int> m;
for (int num : A) mx = max(mx, num); //数组长度
vector<int> root(mx + 1); //初始化union 数组
for (int i = 1; i <= mx; ++i) root[i] = i; //开始每个元素的头节点都指向自己
for (int num : A) {
for (int d = sqrt(num); d >= 2; --d) { //寻找每个元素的公因子
if (num % d == 0) {
root[find(root, num)] = root[find(root, d)]; //将公因子的父节点合并
root[find(root, num)] = root[find(root, num / d)];
}
}
}
for (int num : A) {
res = max(res, ++m[find(root, num)]); //统计不同元素的相同父节点个数 作为最大长度
}
return res;
}
int find(vector<int>& root, int x) {
return root[x] == x ? x : (root[x] = find(root, root[x])); //在查询每个节点的父节点时必须压缩路径
}
};

 


【leetcode】952. Largest Component Size by Common Factor(Union find)的更多相关文章

  1. 【LeetCode】952. Largest Component Size by Common Factor 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetco ...

  2. 【LeetCode】813. Largest Sum of Averages 解题报告(Python)

    [LeetCode]813. Largest Sum of Averages 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博 ...

  3. [Swift]LeetCode952. 按公因数计算最大组件大小 | Largest Component Size by Common Factor

    Given a non-empty array of unique positive integers A, consider the following graph: There are A.len ...

  4. 【LeetCode】382. Linked List Random Node 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数组保存再随机选择 蓄水池抽样 日期 题目地址:ht ...

  5. 【LeetCode】232. Implement Queue using Stacks 解题报告(Python & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Python解法 Java解法 日期 [LeetCo ...

  6. 【LeetCode】993. Cousins in Binary Tree 解题报告(C++ & python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目地址:https://le ...

  7. 【LeetCode】983. 最低票价 Minimum Cost For Tickets(C++ & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetco ...

  8. 【LeetCode】695. Max Area of Island 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 日期 题目地址:ht ...

  9. 【LeetCode】496. Next Greater Element I 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 直接遍历查找 字典保存位置 日期 题目地址:http ...

随机推荐

  1. Gitee图床设置

    https://gitee.com/ 创建新仓库 点击右上角加号->新建仓库,填写基本信息后点击下面的创建即可 https://gitee.com/projects/new 创建新令牌 点击设置 ...

  2. Linux 兴趣小组2016免试题 第四关揭秘

    Linux 兴趣小组2016免试题 点这里 首先贴出第四关链接Linux 兴趣小组2016免试题 第四关 第四关: 进入网址我们看到的是4张扑克牌K,这是什么意思? 要我斗地主?好了,还是乖乖的先查看 ...

  3. JavaScript 事件循环

    JavaScript 事件循环 事件循环 任务队列 async/await 又是如何处理的呢 ? 定时器问题 阻塞还是非阻塞 实际应用案例 拆分 CPU 过载任务 进度指示 在事件之后做一些事情 事件 ...

  4. Spring Cloud Gateway自定义过滤器实战(观测断路器状态变化)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. [bzoj2432]兔农

    将每一个重置为0的点作为一段,那么它会导致后面为以x x为开头的斐波拿起数列的东西,那么设这一段是以x为开头,要快速转移到下一段,就可以解决这道题目为了转移,我们要处理出下面的东西:1.求出x关于模k ...

  6. PaintHouse I

    ColorCostDP.hpp // // Created by Administrator on 2021/7/21. // #ifndef C__TEST01_COLORCOSTDP_HPP #d ...

  7. 【Tool】MySQL安装

    MySQL安装 2019-11-07  14:30:32  by冲冲 本机 Windows7 64bit,MySQL是 mysql-8.0.18-winx64.zip. 1.官网下载 https:// ...

  8. Devs--开源规则引擎介绍

    Devs Devs是一款轻量级的规则引擎. 开源地址:https://github.com/CrankZ/devs 基础概念 此规则引擎的基础概念有字段.条件.规则等. 其中字段组成条件,条件组成规则 ...

  9. Python迭代器生成器与生成式

    Python迭代器生成器与生成式 什么是迭代 迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果.每一次对过程的重复称为一次"迭代",而每一次迭代得到的结果会作为下一次迭 ...

  10. JavaScript Sanitizer API:原生WEB安全API出现啦

    10月18号, W3C中网络平台孵化器小组(Web Platform Incubator Community Group)公布了HTML Sanitizer API的规范草案.这份草案用来解决浏览器如 ...