Spark(九)【RDD的分区和自定义Partitioner】
spark的分区
Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数。
注意
(1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD,分区器的值是None
(2)每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的。
查看RDD的分区器
scala> val pairs = sc.parallelize(List((1,1),(2,2),(3,3)))
pairs: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at
scala> pairs.partitioner
res1: Option[org.apache.spark.Partitioner] = None
对RDD进行重新分区
val partitioned = pairs.partitionBy(new HashPartitioner(2))
partitioned: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[4] at partitionBy at <console>:27
一. Hash分区
HashPartitioner分区的原理:对于给定的key,计算其hashCode,并除以分区的个数取余,如果余数小于0,则用余数+分区的个数(否则加0),最后返回的值就是这个key所属的分区ID。
聚类! key相同,hashCode相同,分配到同一个区
问题:数据倾斜,每个分区中数据量的不均匀
二. Ranger分区
将一定范围内的数映射到某一个分区内,尽量保证每个分区中数据量的均匀,而且分区与分区之间是有序的,一个分区中的元素肯定都是比另一个分区内的元素小或者大,但是分区内的元素是不能保证顺序的
实现过程:
①抽样产生边界数组
②将元素根据边界数组判断属于哪个区
三. 自定义Partitioner
实现过程
要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。
(1)numPartitions: Int:返回创建出来的分区数。
(2)getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。
使用
使用自定义的 Partitioner 是很容易的:只要把它传给 partitionBy() 方法即可。
使用自定义分区器,传给 partitionBy() 方法
scala> val par = data.partitionBy(new MyCustomerPartitioner(2))
par: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[2] at partitionBy at <console>:27
查看重新分区后的数据分布
scala> par.mapPartitionsWithIndex((index,items)=>items.map((index,_))).collect
res3: Array[(Int, (Int, Int))] = Array((0,(2,2)), (0,(4,4)), (0,(6,6)), (1,(1,1)), (1,(3,3)), (1,(5,5)))
案例
需求:有以下数据,希望年龄相同的进入同一个区。
User("tom", 12), User("kobe", 12), User("mick", 22), User("jack", 23)
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
/**
* @description: TODO
* @author: HaoWu
* @create: 2020年08月03日
*/
object MyPartitionerTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("RDDTest").setMaster("local[*]")
val sc = new SparkContext(conf)
val list = List(User("tom", 12), User("kobe", 12), User("mick", 22), User("jack", 23))
val result = sc.makeRDD(list).map {
case User(name, age) => (age, name)
}.partitionBy(new MyPartitioner(3))
result.saveAsTextFile("output")
}
}
/**
* User样例类
*/
case class User(name: String, age: Int)
/**
* 自定义分区器
*/
class MyPartitioner(num: Int) extends Partitioner {
//设置分区数
override def numPartitions: Int = num
//分区规则
override def getPartition(key: Any): Int = {
//判断是否为Int类型
if (!key.isInstanceOf[Int]) {
0
} else {
//Hash分区具有聚类的作用,相同age的会被分如同一个区
key.asInstanceOf[Int] % numPartitions
}
}
}
Spark(九)【RDD的分区和自定义Partitioner】的更多相关文章
- Spark RDD概念学习系列之Pair RDD的分区控制
不多说,直接上干货! Pair RDD的分区控制 Pair RDD的分区控制 (1) Spark 中所有的键值对RDD 都可以进行分区控制---自定义分区 (2)自定义分区的好处: 1) 避免数据倾 ...
- RDD的分区相关
分区是rdd的一个属性,每个分区是一个迭代器 分区器是决定数据数据如何分区 RDD划分成许多分区分布到集群的节点上,分区的多少涉及对这个RDD进行并行计算的粒度.用户可以获取分区数和设置分区数目,默认 ...
- Spark之 RDD
简介 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. Resilien ...
- Spark之RDD的定义及五大特性
RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上 ...
- Spark之RDD弹性特性
RDD作为弹性分布式数据集,它的弹性具体体现在以下七个方面. 1.自动进行内存和磁盘数据存储的切换 Spark会优先把数据放到内存中,如果内存实在放不下,会放到磁盘里面,不但能计算内存放下的数据,也能 ...
- RDD(六)——分区器
RDD的分区器 Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过 ...
- 关于Spark中RDD的设计的一些分析
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...
- Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
随机推荐
- Gitee图床设置
https://gitee.com/ 创建新仓库 点击右上角加号->新建仓库,填写基本信息后点击下面的创建即可 https://gitee.com/projects/new 创建新令牌 点击设置 ...
- 关于linux7.x系列下的 systemd 的理解
历史上Linux的启动一直采用init进程,下面的命令用来启动服务. $ sudo /etc/init.d/apache2 start #或者 $ service apache2 start 这种方法 ...
- Linux使用ssh测试端口
在windows上可以使用telnet客户端测试,在linux如果不方便安装telnet客户端的时候可以通关ssh来测试端口 具体命令如下 ssh -v -p 8080 root@59.207.252 ...
- CentOS部署多台服务器JDK(shell脚本部署)
部署7台新服务器的jdk,数量不算多,但也不打算一台一台的部署,写了个脚本执行 [ #!/bin/bash# JDK 安装包名jdk_packge="jdk-8u162-linux-x64. ...
- Kali安装Parallels Tools过程记录
最近两天又参加了公司一年一度的网络安全劳动竞赛,之前用过的一个 Kali 忘记密码进不去了 -_- .重新安装了 Kali 2021.3a 之后发现 Parallels Tools 安装失败,记录了一 ...
- glibc memcpy() 源码浅谈
其实我本来只是想搞懂为什么memcpy()函数的参数类型是void *的: 我以为会在memcpy()源码中能找到答案,其实并没有,void *只是在传递参数的时候起了作用,可以让memcpy()接受 ...
- 该虚拟机似乎正在使用中。如果该虚拟机未在使用,请按“获取所有权(T)”按钮获取它的所有权
问题 打开虚拟机镜像时报 VMware该虚拟机似乎正在使用中.如果该虚拟机未在使用,请按"获取所有权(T)"按钮获取它的所有权 解决方法 在你安装的镜像文件目录下找到后缀为.vmx ...
- Vue组件传值prop验证方式
在Vue组件开发过程中,父组件要经常给子组件传递数据,在传递数据的过程中,子组件可以使用prop来接收父组件传递的值,同时呢,我们可以为组件的 prop 指定验证要求,例如你知道的这些类型.如果有一个 ...
- selet 语句详解
SELECT 语句的基本格式为: SELECT 要查询的列名 FROM 表名字 WHERE 限制条件; 2.0 数学符号条件 SELECT 语句常常会 ...
- AnnotationConfigApplicationContext(1)之初始化Scanner和Reader
AnnotationConfigApplicationContext(1)初始化Scanner和Reader 我们以AnnotationConfigApplicationContext为起点来探究Sp ...