"Shortest" pair of paths

题目大意

给出 \(n\) 个点,\(m\) 条边,除第一个点和最后一个点外,其他所有的点都只能被经过一次,要求找到两条从第一个点到最后一个点的路径,使其长度和最小。

分析

拿到这道题,通过观察数据范围和问题模式,其实很容易想到这是一道可以通过网络流来解决的问题,网络流确实非常擅长通过连边的流量限制来表示这种对经过次数的限制

本题就是一个非常明显的最小费用流,其建图套路也比较容易想到:

  • 拆点,将每个点拆成入点和出点,除了第一个点与最后一个点,点 \(i\) 与 \(i'\) 间建立一条流量为 \(1\) 、 费用为 \(0\) 的边,而点 \(1\) 与点 \(n\) 则需要建立一条流量为 \(2\) 的边,费用为 \(0\) 。

  • 建立一个超级源点和一个超级汇点,超级源点向点 \(1\) 连接一条流量为 \(+\infty\) 、费用为 \(0\) 的边,同理,点 \(n\) 向超级汇点建立一条流量为 \(+\infty\) 、费用为 \(0\) 的边。

  • 对于给出的每一条边,设由 \(i\) 通往 \(j\) ,花费为 \(val\) ,则由 \(i'\) 向 \(j\) 连接一条流量为 \(1\) ,费用为 \(val\) 的边。

思考这样做的正确性,拆点显然维护了对于每个点只能被经过一次的性质,不难发现这样找出来的两条路径除了点 \(1\) 与点 \(n\) 外经过的其他点都一定不会重复,与题意相符,这样建出来的图配上最小费用流的模板是能够通过这道题的。

CODE

#include <bits/stdc++.h>
using namespace std;
const int N=2e3+10,M=2e4+10,INF=0x3f3f3f3f;
int T,n,m,s,_s,t,maxf,maxc;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
int tot=-1,v[2*M+4*N],w[2*M+4*N],p[2*M+4*N],nex[2*M+4*N],first[2*M+4*N];
inline void Add(int x,int y,int z,int c)
{
nex[++tot]=first[x];
first[x]=tot;
v[tot]=y,w[tot]=z,p[tot]=c;
}
bool vis[2*N];
int pre[2*N],dis[2*N],Min[2*N];
inline bool SPFA()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
queue<int> q;
q.push(s);
vis[s]=true,dis[s]=0,Min[s]=INF;
while(!q.empty()){
int now=q.front(); q.pop();
vis[now]=false;
for(register int i=first[now];i!=-1;i=nex[i]){
int to=v[i];
if(!w[i]) continue;
if(dis[to]>dis[now]+p[i]){
dis[to]=dis[now]+p[i];
Min[to]=min(Min[now],w[i]);
pre[to]=i;
if(!vis[to]) q.push(to),vis[to]=true;
}
}
}
return dis[t]!=INF;
}
inline void EK()
{
while(SPFA()){
maxf+=Min[t];
maxc+=dis[t]*Min[t];
int temp=t,i;
while(temp!=s){
i=pre[temp];
w[i]-=Min[t];
w[i^1]+=Min[t];
temp=v[i^1];
}
}
}
int main()
{
while(1){
T++;
memset(first,-1,sizeof(first));
tot=1;maxf=maxc=0;
n=read(),m=read();
if(!n&&!m) break;
s=0,t=2*n+1;
Add(s,1,INF,0),Add(1,s,0,0);
Add(1,1+n,2,0),Add(1+n,1,0,0);
Add(n,2*n,2,0),Add(2*n,n,0,0);
Add(2*n,t,INF,0),Add(t,2*n,0,0);
for(register int i=1;i<=m;i++){
int x=read(),y=read(),z=read();
x++,y++;
Add(x+n,y,1,z),Add(y,x+n,0,-z);
}
for(register int i=2;i<n;i++) Add(i,i+n,1,0),Add(i+n,i,0,0);
EK();
if(maxf!=2) printf("Instance #%d: Not possible\n",T);
else printf("Instance #%d: %d\n",T,maxc);
} return 0;
}

"Shortest" pair of paths[题解]的更多相关文章

  1. POJ3068:"Shortest" pair of paths——题解

    http://poj.org/problem?id=3068 题目大意: 从0-n-1找到两条边和点都不相同(除了0和n-1外)的最小费用路径. ——————————————————————————— ...

  2. 2018.06.27"Shortest" pair of paths(费用流)

    "Shortest" pair of paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1589 A ...

  3. POJ3068 "Shortest" pair of paths 【费用流】

    POJ3068 "Shortest" pair of paths Description A chemical company has an unusual shortest pa ...

  4. poj 3068 "Shortest" pair of paths

    "Shortest" pair of paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1407 ...

  5. UVALive - 2927 "Shortest" pair of paths(最小费用最大流)题解

    题意:有n个机器,机器之间有m条连线,我们需要判断机器0到n-1是否存在两条线路,存在输出最小费用. 思路:我们把0连接超级源点,n-1连接超级汇点,两者流量都设为2,其他流量设为1,那么只要最后我们 ...

  6. POJ 3068 "Shortest" pair of paths(费用流)

    [题目链接] http://poj.org/problem?id=3068 [题目大意] 给出一张图,要把两个物品从起点运到终点,他们不能运同一条路过 每条路都有一定的费用,求最小费用 [题解] 题目 ...

  7. POJ3068 "Shortest" pair of paths

    嘟嘟嘟 题目大意:一个有向图,每一条边有一个边权,求从节点\(0\)到\(n - 1\)的两条不经过同一条边的路径,并且边权和最小. 费用流板子题. 发个博客证明一下我写了这题. #include&l ...

  8. [poj] 3068 "Shortest" pair of paths || 最小费用最大流

    [原题](http://poj.org/problem?id=3068) 给一个有向带权图,求两条从0-N-1的路径,使它们没有公共点且边权和最小 . //是不是像传纸条啊- 是否可行只要判断最后最大 ...

  9. UVALIVE 2927 "Shortest" pair of paths

    裸的费用流.一开始因为这句话还觉得要拆点 样例行不通不知道这句话干啥用的.Further, the company cannot place the two chemicals in same dep ...

随机推荐

  1. DM8_Linux详细安装步骤

    (从虚拟机配置讲起,有基础的可以直接看二,谢谢) 一.虚拟机的安装和配置 软件:virtualbox 系统:centos7 工具:Xshell 官网下载centos7,使用virtualbox安装ce ...

  2. GO学习-(18) Go语言基础之并发

    Go语言基础之并发 并发是编程里面一个非常重要的概念,Go语言在语言层面天生支持并发,这也是Go语言流行的一个很重要的原因. Go语言中的并发编程 并发与并行 并发:同一时间段内执行多个任务(你在用微 ...

  3. ZooKeeper学习笔记三:使用ZooKeeper实现一个简单的配置中心

    作者:Grey 原文地址:ZooKeeper学习笔记三:使用ZooKeeper实现一个简单的配置中心 前置知识 完成ZooKeeper集群搭建以及熟悉ZooKeeperAPI基本使用 需求 很多程序往 ...

  4. TOF与结构光技术分析

    TOF与结构光技术分析 一.概述 结构光(Structuredlight),通常采用特定波长的不可见的激光作为光源,它发射出来的光带有编码信息,投射在物体上,通过一定算法来计算返回的编码图案的畸变来得 ...

  5. 适用于Windows和Linux的Yolo-v3和Yolo-v2(下)

    适用于Windows和Linux的Yolo-v3和Yolo-v2(下) 如何训练(检测自定义对象): (培养老YOLO V2 yolov2-voc.cfg,yolov2-tiny-voc.cfg,yo ...

  6. 狂神说Mybatis笔记

    环境说明: jdk 8 + MySQL 5.7.19 maven-3.6.1 IDEA 学习前需要掌握: JDBC MySQL Java 基础 Maven Junit 第一节:入门 什么是MyBati ...

  7. 「题解」小 R 打怪兽 monster

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目描述 小 R 最近在玩一款游戏.在游戏中,小 R 要依次打 \(n\) 个怪兽,他需要打败至少 \(k\) 个怪兽才能通关.小 ...

  8. centos7 安装卸载程序rpm使用方法

    1.安装 rpm 包: ➢ 基本语法 rpm -ivh RPM 包全路径名称 2.卸载 rpm 包: ➢ 基本语法 rpm -e RPM 包的名称 ➢ 应用案例 删除 firefox 软件包 rpm ...

  9. Spring Cloud 和 Dubbo,到底用哪个好?

    Spring Cloud是http协议传输,带宽会比较多,同时使用http协议一般会使用JSON报文,消耗会更大 dubbo的开发难度较大,原因是dubbo的jar包依赖问题很多大型工程无法解决 sp ...

  10. 干货 | LuatOS BSP移植教程,简单到复制粘贴!!!

    LuatOS本着自身的开源特性,可以很轻松的嵌入到很多微处理器和微控制器.今天简要讲下如何移植这套系统,上手比较简单,看完基本就会了. 要想做移植,就要先了解需要移植芯片的SDK,LuatOS依赖于F ...