C - 抽屉 POJ - 3370 (容斥原理)
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.
Your job is to help the children and present a solution.
Input
The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.
The last test case is followed by two zeros.
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
Sample Output
3 5
2 3 4
但是修改过代码再提交一直WA
看了别人的代码,样例输出和我写的是一样的但是不知道为什么,我写的一直WA
1 #include<iostream>
2 #include<cstdlib>
3 #include<cstdio>
4 #include<cstring>
5 #include<algorithm>
6 #include<cmath>
7 using namespace std;
8 int a[100000] , mod[100000] ;
9 int main()
10 {
11 int c , n ;
12 while ( scanf("%d%d",&c,&n) , c || n )
13 {
14 int i , j ;
15 for ( i = 0 ; i < n ; i ++ )
16 scanf("%d",&a[i]) , mod[i] = -2 ;//将mod初始化为-2
17 mod[0]=-1 ;//mod[0]为-1,就是假设存在a[-1],且a[-1]是n的倍数,这样就可以把两种情况写在一起
18 __int64 sum = 0 ;//直接用sum,省去了另开数组的空间
19 for ( i = 0 ; i < n ; i ++ )
20 {
21 sum += a[i] ;
22 if ( mod [ sum % c ] != -2 )
23 {//如果在i之前有与sum对n同余的数,则可以输出答案,
24 for ( j = mod [ sum % c ] + 1 ; j <= i ; j ++ )
25 {
26 cout<<j+1;
27 if ( i != j )
28 cout<<' ';
29 }
30 cout<<endl;
31 break;
32 }
33 mod [sum%c] = i ;//记录余数对应的是i
34 }
35 }
36 return 0;
37 }
C - 抽屉 POJ - 3370 (容斥原理)的更多相关文章
- B - 抽屉 POJ - 2356 (容斥原理)
The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6631 Accepted: 2448 ...
- poj 2773(容斥原理)
容斥原理入门题吧. Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9798 Accepted: 3 ...
- Poj 3370
题目传送门:https://vjudge.net/problem/POJ-3370 题意:在n个数中找K个数使得他们的和为c的倍数. 题解:抽屉原理,同poj 2356 只不过写法上有所简化. 简化版 ...
- [POJ 3370] Halloween treats
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7143 Accepted: 2641 ...
- poj 3370 鸽笼原理知识小结
中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...
- POJ 2356 && POJ 3370 鸽巢原理
POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...
随机推荐
- CSS 书写禅机
这是未来的趋势所向,如是我行. 注意:原文发表于 2017-9-6,随着框架不断演进,部分内容可能已不适用. CSS 日渐惹人憎恶. 究其原因颇多,归根结底,皆因 CSS 给人的感觉总是飘渺迷蒙.变幻 ...
- Kubernetes 实战 —— 01. Kubernetes 介绍
简介 P2 Kubernetes 能自动调度.配置.监管和故障处理,使开发者可以自主部署应用,并且控制部署的频率,完全脱离运维团队的帮助. Kubernetes 同时能让运维团队监控整个系统,并且在硬 ...
- kali 下的邮件发送工具 swaks
kali 下的邮件发送工具 swaks Swaks 是一个功能强大,灵活,可编写脚本,面向事务的 SMTP 测试工具,目前 Swaks 托管在私有 svn 存储库中. 官方项目 http://jetm ...
- 面试必备——Java多线程与并发(一)
1.进程和线程的 (1)由来 1)串行 最初的计算机只能接受一些特定的指令,用户输入一个指令,计算机就做出一个操作.当用户在思考或者输入时,计算机就在等待.显然这样效率低下,在很多时候,计算机都处在等 ...
- idea添加本地文件约束(DTD)
当我们做 xml 文件配置的时候,需要对其进行约束的配置 例如: hibernate 如果我们在联网的情况下是可以不添加配置文件约束的,红框内的 URL 会自动帮我们从网络上加载约束文件,但是没有网络 ...
- 【odoo14】第十八章、自动化测试
当我们开发大型应用的时候,通过自动化测试可以大幅提高应用的健壮性.每年,odoo都会发布新版本,自动化测试对于应用的回归测试非常有帮助.幸运的是,odoo框架有不同自动化测试用例.odoo主要包括三种 ...
- 【odoo14】第六章、管理模块数据
本章代码可在原作者github下载 使用外部ID及命名空间 外部ID及XML ID用于标记记录.到目前为止,我们在视图.菜单及动作中接触了XML IDs.本节我们将进一步了解什么是XML ID. 步骤 ...
- Windows包管理器——Scoop 包管理器
Scoop 包管理器 目录 Scoop 包管理器 参考 官方 博客 声明 目录 scoop 安装&&卸载 安装( 使用 powershell) 卸载(软件的使用权归自己所有,一言不合即 ...
- 2019 GDUT Rating Contest I : Problem H. Mixing Milk
题面: H. Mixing Milk Input file: standard input Output file: standard output Time limit: 1 second Memory ...
- python-实现输出乘法口诀表
list1 = [1,2,3,4,5,6,7,8,9] 2 def number(num): 3 for i in list1[:num]: 4 result = 1 * i 5 print(&quo ...