Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

和另一道题有相似的地方

但是修改过代码再提交一直WA

看了别人的代码,样例输出和我写的是一样的但是不知道为什么,我写的一直WA

 1 #include<iostream>
2 #include<cstdlib>
3 #include<cstdio>
4 #include<cstring>
5 #include<algorithm>
6 #include<cmath>
7 using namespace std;
8 int a[100000] , mod[100000] ;
9 int main()
10 {
11 int c , n ;
12 while ( scanf("%d%d",&c,&n) , c || n )
13 {
14 int i , j ;
15 for ( i = 0 ; i < n ; i ++ )
16 scanf("%d",&a[i]) , mod[i] = -2 ;//将mod初始化为-2
17 mod[0]=-1 ;//mod[0]为-1,就是假设存在a[-1],且a[-1]是n的倍数,这样就可以把两种情况写在一起
18 __int64 sum = 0 ;//直接用sum,省去了另开数组的空间
19 for ( i = 0 ; i < n ; i ++ )
20 {
21 sum += a[i] ;
22 if ( mod [ sum % c ] != -2 )
23 {//如果在i之前有与sum对n同余的数,则可以输出答案,
24 for ( j = mod [ sum % c ] + 1 ; j <= i ; j ++ )
25 {
26 cout<<j+1;
27 if ( i != j )
28 cout<<' ';
29 }
30 cout<<endl;
31 break;
32 }
33 mod [sum%c] = i ;//记录余数对应的是i
34 }
35 }
36 return 0;
37 }

C - 抽屉 POJ - 3370 (容斥原理)的更多相关文章

  1. B - 抽屉 POJ - 2356 (容斥原理)

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...

  2. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  3. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  4. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  5. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  6. Poj 3370

    题目传送门:https://vjudge.net/problem/POJ-3370 题意:在n个数中找K个数使得他们的和为c的倍数. 题解:抽屉原理,同poj 2356 只不过写法上有所简化. 简化版 ...

  7. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  8. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  9. POJ 2356 && POJ 3370 鸽巢原理

    POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...

随机推荐

  1. 二叉树、平衡二叉树、红黑树、B树、B+树与B*树

    转: 二叉树.平衡二叉树.红黑树.B树.B+树与B*树 一.二叉树 1️⃣二叉查找树的特点就是左子树的节点值比父亲节点小,而右子树的节点值比父亲节点大,如图: 基于二叉查找树的这种特点,在查找某个节点 ...

  2. 25个关键技术点,带你熟悉Python

    摘要:本文收纳了Python学习者经常使用的库和包,并介绍了Python使用中热门的问题. 01.Python 简介 什么是 Python 一种面向对象的高级动态可解释型脚本语言. Python 解释 ...

  3. mysql查询较长的执行进程及创建权限账号

    A:对于死锁,进程的操作 1.查找当前活跃事务 SELECT * from information_schema.INNODB_TRX 根据trx_started等判断事务是否异常锁定 2.杀死线程 ...

  4. golang——net/rpc/jsonrpc包学习

    1.jsonrpc包 该实现了JSON-RPC的ClientCodec和ServerCodec接口,可用于rpc包. 可用于跨语言使用go rpc服务. 2.常用方法 (1)func Dial(net ...

  5. Java数组:多维数组(二维),Arrays类,冒泡排序

    Arrays类数组工具类:java.util.ArraysArrays类中的方法都是static修饰的静态方法,在使用的时候可以直接使用类名进行调用,而"不用"使用对象来调用 具有 ...

  6. Java8 BiFunction 简单用用

    最近来了新公司,主要用到了ElasitcSearch,大家都知道在底层查询代码中往往需要判断传入某个参数是否为空来判断设置查询,例如下方代码: BoolQueryBuilder query = Que ...

  7. Apache配置 5.访问日志不记录静态文件

    介绍:项目中的CSS.图片.js都是静态文件.一般会将静态文件放到一个单独的目录中,以方便管理. 1. 配置 # vim /usr/local/apache2.4/conf/extra/httpd-v ...

  8. vue-cli脚手架安装及注意事项

    1.下载nodejs 链接:https://nodejs.org/en/直接下载电脑对应的版本即可. 13.5网上说不大稳定(一个表示①推荐用户版本,②最新版本) 2.安装nodejs 建议在D或者E ...

  9. C# 获取Word文本高亮和背景(附vb.net代码)

    Word中的文本高亮和背景是通过不同方法来设置的.文本高亮(Text Highlight Color)是通过[字体]中的快速工具栏设置:文本背景(Text Background/Shading)是通过 ...

  10. Stone Game, Why are you always there? HDU - 2999

    题目链接:https://vjudge.net/problem/HDU-2999 题意:有N堆石头,两个人交替取,每次只能取连续的k个石子,最后没有石子取得人输. 思路:如果我们每次取靠边的k个,那么 ...