Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

和另一道题有相似的地方

但是修改过代码再提交一直WA

看了别人的代码,样例输出和我写的是一样的但是不知道为什么,我写的一直WA

 1 #include<iostream>
2 #include<cstdlib>
3 #include<cstdio>
4 #include<cstring>
5 #include<algorithm>
6 #include<cmath>
7 using namespace std;
8 int a[100000] , mod[100000] ;
9 int main()
10 {
11 int c , n ;
12 while ( scanf("%d%d",&c,&n) , c || n )
13 {
14 int i , j ;
15 for ( i = 0 ; i < n ; i ++ )
16 scanf("%d",&a[i]) , mod[i] = -2 ;//将mod初始化为-2
17 mod[0]=-1 ;//mod[0]为-1,就是假设存在a[-1],且a[-1]是n的倍数,这样就可以把两种情况写在一起
18 __int64 sum = 0 ;//直接用sum,省去了另开数组的空间
19 for ( i = 0 ; i < n ; i ++ )
20 {
21 sum += a[i] ;
22 if ( mod [ sum % c ] != -2 )
23 {//如果在i之前有与sum对n同余的数,则可以输出答案,
24 for ( j = mod [ sum % c ] + 1 ; j <= i ; j ++ )
25 {
26 cout<<j+1;
27 if ( i != j )
28 cout<<' ';
29 }
30 cout<<endl;
31 break;
32 }
33 mod [sum%c] = i ;//记录余数对应的是i
34 }
35 }
36 return 0;
37 }

C - 抽屉 POJ - 3370 (容斥原理)的更多相关文章

  1. B - 抽屉 POJ - 2356 (容斥原理)

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...

  2. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  3. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  4. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  5. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  6. Poj 3370

    题目传送门:https://vjudge.net/problem/POJ-3370 题意:在n个数中找K个数使得他们的和为c的倍数. 题解:抽屉原理,同poj 2356 只不过写法上有所简化. 简化版 ...

  7. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  8. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  9. POJ 2356 && POJ 3370 鸽巢原理

    POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...

随机推荐

  1. 《Asp.Net Core3 + Vue3入坑教程》-Net Core项目搭建与Swagger配置步骤

    简介 <Asp.Net Core3 + Vue3入坑教程> 此教程仅适合新手入门或者前后端分离尝试者.可以根据图文一步一步进操作编码也可以选择直接查看源码.每一篇文章都有对应的源码 教程后 ...

  2. vs调试qt代码,无法单步调试

    在使用vs调试qt代码时,可以编译但无法单步调试QT源码.报错缺少qmain_win.cpp或者其他q******.cpp文件. 1.因为安装qt时没有安装qt源码库,重新下载一个src源码就可以了. ...

  3. js的基本数据类型与引用数据类型

    基本数据类型与引用数据类型 基本数据类型有五种 /* 基本数据类型有: - String - Number - Boolean - Null ** typeof null === 'object' 这 ...

  4. WPF 基础 - DataTemplate

    如果把控件的功能视为内容,则可以使用控件模板 ControlTemplate 来控制它的展现: 如果把数据视为内容,则可以使用数据模板 DataTemplate 把数据展示出来: ControlTem ...

  5. Linux目录,rpm及top,vi命令简记

    一次简单的Linux常用操作记录 一.一些Linux目录结构 /bin 存放二进制可执行文件(ls.cat.mkdir等),一些常用的命令一般都在这里. /etc 存放系统管理和配置文件 /home ...

  6. 叫练手把手教你读JVM之GC信息

    案例 众所周知,GC主要回收的是堆内存,堆内存中包含年轻代和老年代,年轻代分为Eden和Surivor,如下图所示.我们用案例分析下堆的GC信息[版本:HotSpot JDK1.8]. /** * @ ...

  7. ch2_8_4求解投骰子游戏问题

    思路:递推.到第n步可以从第0步走n步到第n步,从第1步走n-1步到第n步... ...依次类推,=> f(n)=f(0)+f(1)+...+f(n-1) import java.util.Sc ...

  8. windows回收站无法设置

    win+r运行 regedit HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer 修改NoRe ...

  9. 等不及要告诉你的一件事-console.log可以指定样式

    今天看`简书`文章,习惯性的打开了开发者工具,于是发现了意见有意思的事,在console面板,发现了如下的日志: ??? 这 ... 有点意思. 如果上面的图片,不能引起你的兴趣,那么你可以再看看这个 ...

  10. 最小生成树(Prim算法,Kruskal算法 )

    声明:图片及内容基于https://www.bilibili.com/video/BV1yp4y1Q74o?from=articleDetail 最小生成树原理 . 普利姆(Prim)算法 原理 Pr ...