题目链接

基环树套路题。(然而各种错误调了好久233)

当$m=n-1$时,原图是一棵树。

先以任意点为根做$dp$,求出从每一个点出发,然后只往自己子树里走时路径的期望长度。

接着再把整棵树再扫一遍,求出从每一个点出发时路径的期望长度。

最后再统计一遍答案即可。

当$m=n$时,原图是一棵基环树。

先找到图中那唯一的一个环,然后以环上的每一个节点为根在此节点的子树内做$dp$。

环上节点的数量很少,$dp$之后直接暴力算出从每一个环上节点出发时路径的期望长度。

然后把每一个环上节点的子树扫一遍,求出从每一个点出发时路径的期望长度。

最后再统计一遍答案即可。

#include<iostream>
#include<cstdio>
#include<fstream>
using namespace std;
struct edge
{
int last;
int end;
int weight;
}e[200005];
int n=0,m=0,root=0;
int ne=1,cnt[100005],note[100005];
int tot=0,ring[100005];
int ringdis[100005];
bool flag=false,vis[100005],inring[100005];
double ans=0,f[100005],d[100005];
void NewEdge(int u,int v,int w)
{
ne++;
e[ne].last=note[u];
e[ne].end=v;
e[ne].weight=w;
note[u]=ne;
}
void dfs(int x,int fx)
{
cnt[x]=f[x]=0;
for(int i=note[x];i;i=e[i].last)
{
if(e[i].end==fx||inring[e[i].end]) continue;
dfs(e[i].end,x),cnt[x]++;
}
if(cnt[x]==0) return;
for(int i=note[x];i;i=e[i].last)
{
if(e[i].end==fx||inring[e[i].end]) continue;
f[x]+=e[i].weight+f[e[i].end];
}
f[x]/=cnt[x];
}
void dfss(int x,int fx,int w)
{
if(x==root&&!inring[x]) d[x]=f[x];
else if(x!=root)
{
d[x]=f[x]*cnt[x]/(cnt[x]+1);
if(fx==root&&cnt[fx]==1) d[x]+=(double)w/(cnt[x]+1);
else if(fx==root) d[x]+=((d[fx]*cnt[fx]-f[x]-w)/(cnt[fx]-1)+w)/(cnt[x]+1);
else d[x]+=((d[fx]*(cnt[fx]+1)-f[x]-w)/cnt[fx]+w)/(cnt[x]+1);
}
for(int i=note[x];i;i=e[i].last)
{
if(e[i].end==fx||inring[e[i].end]) continue;
dfss(e[i].end,x,e[i].weight);
}
}
void dfsss(int x,int fe)
{
if(flag) return;
vis[x]=true,ring[++tot]=x;
for(int i=note[x];i;i=e[i].last)
{
if(i==(fe^1)) continue;
if(flag) break;
if(vis[e[i].end])
{
int st=0,ed=tot,h=e[i].end;
for(int i=1;i<=tot;i++)
if(ring[i]==h) {st=i;break;}
for(int i=st;i<=ed;i++)
{
inring[ring[i]]=true;
for(int j=note[ring[i]];j;j=e[j].last)
if(e[j].end==((i==ed)?ring[st]:ring[i+1]))
{ringdis[i]=e[j].weight;break;}
}
for(int i=st;i<=ed;i++) dfs(ring[i],0);
for(int i=st;i<=ed;i++)
{
int x=ring[i];
d[x]=f[x]*cnt[x]/(cnt[x]+2);
int u=i,w=0;
double p=1;
for(;;)
{
p/=cnt[ring[u]]+((u==i)?2:1),w=ringdis[u];
u=((u+1>ed)?st:(u+1));
if(((u+1>ed)?st:(u+1))==i)
{d[x]+=p*(f[ring[u]]+w); break;}
else d[x]+=p*(f[ring[u]]*cnt[ring[u]]/(cnt[ring[u]]+1)+w);
}
u=i,w=0,p=1;
for(;;)
{
p/=cnt[ring[u]]+((u==i)?2:1),w=ringdis[(u-1<st)?ed:(u-1)];
u=((u-1<st)?ed:(u-1));
if(((u-1<st)?ed:(u-1))==i)
{d[x]+=p*(f[ring[u]]+w); break;}
else d[x]+=p*(f[ring[u]]*cnt[ring[u]]/(cnt[ring[u]]+1)+w);
}
}
for(int i=st;i<=ed;i++)
cnt[ring[i]]+=2,root=ring[i],dfss(root,0,0);
flag=true; break;
}
dfsss(e[i].end,i);
}
tot--;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u=0,v=0,w=0;
scanf("%d%d%d",&u,&v,&w);
NewEdge(u,v,w);
NewEdge(v,u,w);
}
if(m==n-1) root=1,dfs(root,0),dfss(root,0,0);
else dfsss(1,0);
for(int i=1;i<=n;i++)
ans+=(double)1/n*d[i];
printf("%.5f",ans);
return 0;
}

Luogu P2081

Luogu P2081 [NOI2012]迷失游乐园 | 期望 DP 基环树的更多相关文章

  1. 【题解】Luogu P2081 [NOI2012]迷失游乐园

    原题传送门 这是当时冬令营课上讲的题,咕咕咕到了现在 如果这题没有环套树的话,就很套路了 需要两个数组up[i]和down[i],down[i]表示从i点第一步向下走的期望距离,up[i]表示从i点第 ...

  2. BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )

    一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. -------- ...

  3. [luogu2081 NOI2012] 迷失游乐园 (树形期望dp 基环树)

    传送门 题目描述 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩. 进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m ...

  4. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  5. bzoj2878 [Noi2012]迷失游乐园 [树形dp]

    Description 放假了,小Z认为呆在家里特别无聊.于是决定一个人去游乐园玩. 进入游乐园后.小Z看了看游乐园的地图,发现能够将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环 ...

  6. [bzoj2878][Noi2012]迷失游乐园(基环树dp)

    [bzoj2878][Noi2012]迷失游乐园(基环树dp) bzoj luogu 题意:一颗数或是基环树,随机从某个点开始一直走,不走已经到过的点,求无路可走时的路径长期望. 对于一棵树: 用两个 ...

  7. 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)

    2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...

  8. bzoj 2878: [Noi2012]迷失游乐园

    #include<iostream> #include<cstring> #include<cstdio> #define M 100005 #define ld ...

  9. Hdu第八场 树形dp+基环树

    Card Game 每个牌背面的数字朝正面的数字连一条有向边 则题目变为问你最少翻转多少次 能使得每个数字的入度不超过1 首先判断图中每个连通块是不是树或者基环树 因为只有树或者基环树能使得每个点的入 ...

随机推荐

  1. 在Jupyter Notebook添加代码自动补全功能

    在使用Jupyter notebook时发现没有代码补全功能,于是在网上查找了一些资料,最后总结了以下内容. 1 安装显示目录功能: pip install jupyter_contrib_nbext ...

  2. Win7 ASP连接数据库“未找到提供程序.该程序可能未正确安装”问题

    是自己装的64位Windows 7系统的原因,默认64位环境下,IIS应用程序池未启用32位应用程序,我们只需要启用一下就可以了.打开IIS 7,定位到"应用程序池",然后选择使用 ...

  3. 记一次k8s pod频繁重启的优化之旅

    关键词:k8s.jvm.高可用 1.背景 最近有运维反馈某个微服务频繁重启,客户映像特别不好,需要我们尽快看一下. 听他说完我立马到监控平台去看这个服务的运行情况,确实重启了很多次.对于技术人员来说, ...

  4. adb devices如何连逍遥模拟器的设备

    adb device连接真机,上一篇已经讲过了,这篇讲如何连接模拟器.这里我用的模拟器逍遥模拟器.我先插上手机,另外启动了一个模拟器,直接在cmd中输入adb devices,按理应该有2个设备id, ...

  5. 定要过python二级 选择题第四套

    1. 2. 3. 4. 5. 6. python用于人工智能 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

  6. YbtOJ#532-往事之树【广义SAM,线段树合并】

    正题 题目链接:https://www.ybtoj.com.cn/problem/532 题目大意 给出\(n\)个点的一个\(Trie\)树,定义\(S_x\)表示节点\(x\)代表的字符串 求$$ ...

  7. 【Golang】三个点(...)用法

    众所周知,Go语言是严格类型语言,而开发的时候又遇到传入参数不定的情况,怎么办? 这里的三个点(-),就给我们编程人员带来很大的灵活性,具体如下 在Golang中,三个点一共会用在四个地方(话说三个点 ...

  8. RabbitMQ 3.9.7 镜像模式集群与Springboot 2.5.5 整合

    1. 概述 老话说的好:做人要懂得变通,善于思考,有时稍微转个弯,也许问题就解决了. 言归正传,之前我们聊了 RabbitMQ 3.9.7 镜像模式集群的搭建,今天我们来聊聊 RabbitMQ 3.9 ...

  9. [洛谷日报#204] StackEdit——Markdown 编辑器的功能介绍

    本文同时发表于洛谷日报,您也可以通过洛谷博客进行查看. 1.介绍与开始使用 1.1 这是什么? StackEdit是基于PageDown.Stack Overflow和其他堆栈交换站点使用的Markd ...

  10. mysql安装教程,mysql安装配置教程

    MySQL的安装教程 一.MYSQL的安装 首先登入官网下载mysql的安装包,官网地址:https://dev.mysql.com/downloads/mysql/ 一般下载这个就好,现在的最新版本 ...