BZOJ3295:[CQOI2011]动态逆序对(CDQ分治)
Description
Input
Output
Sample Input
1
5
3
4
2
5
1
4
2
Sample Output
5
2
2
1
Solution
给每个被删除的元素打一个删除时间$t$,设下标为$x$,权值为$y$,那么删除一个元素后,减少的逆序对个数为:
1、$t$比它大,$x$比它小,$y$比它大。
2、$t$比它大,$x$比它大,$y$比它小。
$CDQ$统计一下就好了……
读错题把删除元素看成删除下标真的智障。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define N (100009)
#define LL long long
using namespace std; struct Que
{
int x,y,t;
bool operator < (const Que &a) const
{
return t>a.t;
}
}a[N],tmp[N]; int n,m,c[N],q[N],ans[N],pos[N];
LL sum; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=n; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ1(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ1(l,mid); CDQ1(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && a[i].x<a[j].x)
{
Update(a[i].y,);
tmp[++k]=a[i]; ++i;
}
else
{
ans[a[j].y]+=Query(n)-Query(a[j].y);
tmp[++k]=a[j]; ++j;
}
for (int i=l; i<=mid; ++i) Update(a[i].y,-);
for (int i=l; i<=r; ++i) a[i]=tmp[i];
} void CDQ2(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ2(l,mid); CDQ2(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && a[i].x>a[j].x)
{
Update(a[i].y,);
tmp[++k]=a[i]; ++i;
}
else
{
ans[a[j].y]+=Query(a[j].y-);
tmp[++k]=a[j]; ++j;
}
for (int i=l; i<=mid; ++i) Update(a[i].y,-);
for (int i=l; i<=r; ++i) a[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i) a[i].x=i, a[i].y=read(), pos[a[i].y]=i;
for (int i=; i<=m; ++i) a[pos[q[i]=read()]].t=i;
for (int i=; i<=n; ++i) if (!a[i].t) a[i].t=m+; for (int i=; i<=n; ++i) sum+=Query(n)-Query(a[i].y), Update(a[i].y,);
for (int i=; i<=n; ++i) Update(a[i].y,-);
sort(a+,a+n+); CDQ1(,n);
sort(a+,a+n+); CDQ2(,n); for (int i=; i<=m; ++i) printf("%lld\n",sum), sum-=ans[q[i]];
}
BZOJ3295:[CQOI2011]动态逆序对(CDQ分治)的更多相关文章
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治
[BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- [CQOI2011]动态逆序对 CDQ分治
洛谷上有2道相同的题目(基本是完全相同的,输入输出格式略有不同) ---题面--- ---题面--- CDQ分治 首先由于删除是很不好处理的,所以我们把删除改为插入,然后输出的时候倒着输出即可 首先这 ...
- 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治
题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...
- BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]
RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...
- P3157 [CQOI2011]动态逆序对 CDQ分治
一道CDQ分治模板题简单来说,这道题是三维数点对于离线的二维数点,我们再熟悉不过:利用坐标的单调递增性,先按更坐标排序,再按纵坐标排序更新和查询时都直接调用纵坐标.实际上,我们是通过排序将二维中的一维 ...
随机推荐
- Struts2学习(四)———— ognl表达式、值栈、actionContext之间的关系
一.什么是Ognl? 通过百度百科查询到的解释,其中详细的说明了OGNL的作用. 下面我们就对OGNL这5个作用进行讲解 1.存取对象的任意属性,简单说就是对javabean进行操作(重要) 2.调用 ...
- python——字符串格式化
字符串的基础位置预留(网上到处都是) Python用一个tuple将多个值传递给模板,每个值对应一个格式符 在模板和tuple之间,有一个%号分隔,它代表了格式化操作. 使用字典 当只有很少量的占位符 ...
- 用法:node模块都具备的方法(exports、module、require、__filename、__dirname)
凡是玩弄nodejs的人,都明白,每一个模块都有exports.module.require.__filename.__dirname的方法 清楚了解方法的用法后,玩转node就等于清楚了日常讲话的内 ...
- R语言实战(三)——模拟随机游走数据
一.模拟随机游走数据示例 x <- matrix(0,1000,1) for(i in 1:1000){ x[i+1] <- x[i]+rnorm(1) } plot(x,type=&qu ...
- C#基础知识汇总(不断更新中)
------------------------------目录---------------------------- 1.隐式类型2.匿名类型3.自动属性4.初始化器5.委托6.泛型7.泛型委托8 ...
- SQL while循环
ALTER Proc [dbo].[p_GetServerDataCursor] AS BEGIN IF EXISTS ( SELECT * FROM sys.objects WHERE object ...
- ext js 4.0 grid表格根据列值的不同给行设置不同的背景颜色
Code: Ext.create('Ext.grid.Panel', { ... viewConfig: { getRowClass: function(record) { return record ...
- U盘基本处理,U盘与移动固态硬盘
一.辨别 USB2.0 和 USB3.0 1.从USB外观上来看,USB2.0通常是白色或黑色,而USB3.0则改观为“高大上”的蓝色接口. 目前,部分笔记本电脑USB接口,已同时提供对USB2.0及 ...
- Web前端基础——jQuery(一)
前几天回老家呆了几天,几乎没有怎么学习新的知识,这期间一直有断断续续的看<Java编程思想>,还刷了一些前沿消息,也算没闲着.今天开始学习jQuery啦,继续前进. 在网上查了,买了这本书 ...
- 【github&&git】6、SmartGit(试用期30后),个人继续使用的方法。
在我们做项目的过程中,我们会用到SmartGit这个软件来将本地的MAVEN项目push到国内的码云(https://git.oschina.net)或者是国外的github网站进行项目的管理,这个时 ...