题目大意:

有n盏灯,(0<=n<=1000),有m盏已经点亮,每次只能点亮与已经点亮的灯相邻的灯,求总方案数,答案对1e9+7取模

第一行:两个整数n,m表示灯的总数和已点亮的灯的数目 第二行m个数,表示已点亮的灯的编号

分析:

我们可以借助已经被点亮的灯作为分界点,找到若干个长度不为0的开区间。

对于两边都有开着的灯的区间,我们点亮它每次可以点亮最左边一盏或者最右边一盏,而最后一盏灯只有一种方法,所以点亮长度为len的区间的方案数为:2^(len-1)

特别地,对于两端的区间(一边有灯开着,一边是边界(1或者n)),只有一种方案数(顺着一路点下去)

根据乘法原理,可以先计算出ans*=2^(len2-1)2^(len-2-1)...2^(len(cnt-1)-1)注意开始的时候是i=2,最后一段是i=cnt-1;(最初最末两端算上是没有意义的)

但是由于点灯的时候可以交叉在每个区间内点灯,所以这样的ans还是少了很多。

所以我们重新这样考虑: 考虑将每个区间内考虑成颜色相同的len个球,不同区间球的颜色不同。每一个排列可以当做是一个指令,不同的合法的指令是不同的方案数。

容易知道最初的方案数为:(n-m)!我们将它处理成多重集合的排列,(n-m)!/len1!len2!...lencnt!。这样保证了每个区间内的同一种颜色的球的“单纯相对顺序”(只是这些球之间交换顺序)变化都算作是一种方案。

但是一个区间内,并不是一种方案,对于len的球数,可以有2^(len-1)种合法排列,利用乘法原理再将它们相乘,就可以得出正确的答案。

(需要:快速幂,乘方的乘法逆元) 附代码:

#include<bits/stdc++.h>
#define ll long long
#define int long long
using namespace std;
const int mod=1e9+;
const int N=;
int n,m;
int len[N];//区间长度;
ll fac[N];//阶乘;
ll ifac[N];//阶乘逆元;
ll qm(int x,int y)
{
ll base=x;
ll ans=;
while(y)
{
if(y&) ans=(ans*base)%mod;
base=(base*base)%mod;
y>>=;
}
return ans%mod;
}//快速幂
int cnt;
ll anss=;
int h[N];
signed main()
{
scanf("%lld%lld",&n,&m);
int last=;
int x;
for(int i=;i<=m;i++)
{scanf("%lld",&h[i]);}
sort(h+,h+m+);//注意,编号可能不是单调的。
len[++cnt]=h[]-last-;
for(int i=;i<=m;i++)
{
if(h[i]-h[i-]>) len[++cnt]=h[i]-h[i-]-;
}
len[++cnt]=n-h[m];
for(int i=;i<=cnt-;i++)
anss=(anss*qm(,len[i]-))%mod;//先处理2^len
fac[]=;
ifac[]=;
for(int i=;i<=n-m;i++)
fac[i]=(fac[i-]*i)%mod;//阶乘
ifac[n-m]=qm(fac[n-m],mod-)%mod;//费马小定理先算n-m
for(int i=n-m-;i>=;i--)
ifac[i]=(ifac[i+]*(i+))%mod;//递推算阶乘逆元
anss=(anss*fac[n-m])%mod;
for(int i=;i<=cnt;i++)
anss=(anss*ifac[len[i]])%mod;//多重集合排列处理
printf("%lld",anss%mod);
return ;
}

还有一种组合数学的思想,

就是利用乘法原理,每次乘上:在每次剩余的位置放上len个数的方案数。

友链:https://blog.csdn.net/qq_38538733/article/details/76409237

CF294C Shaass and Lights的更多相关文章

  1. CF294C Shaass and Lights(排列组合)

    题目描述 There are n n n lights aligned in a row. These lights are numbered 1 1 1 to n n n from left to ...

  2. C. Shaass and Lights 组合数学

    http://codeforces.com/contest/294/problem/C 把那个数组n分段了,那么有两类. 1.开头和端点那些,就是只有一端在开始的,这个时候,要开完这些灯,只能循序渐进 ...

  3. 【Cf #178 A】Shaass and Lights(组合数)

    考虑两个灯之间的暗灯,能从左边或右边点亮两种顺序,而最左端或最右端只有一种点亮顺序. 先不考虑点灯顺序,总共有n - m个灯要点亮,对于连续的一段暗灯,他们在总的点灯顺序中的是等价的,于是问题就可以抽 ...

  4. OUC_OptKernel_oshixiaoxiliu_好题推荐

    poj1112 Team Them Up! 补图二分图+dp记录路径codeforces 256A Almost Arithmetical Progression dp或暴力 dp[i][j] = d ...

  5. Codeforces Round #178 (Div. 2)

    A. Shaass and Oskols 模拟. B. Shaass and Bookshelf 二分厚度. 对于厚度相同的书本,宽度竖着放显然更优. 宽度只有两种,所以枚举其中一种的个数,另一种的个 ...

  6. HDOJ 4770 Lights Against Dudely

    状压+暴力搜索 Lights Against Dudely Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights

    [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights 既上一篇分享了中文字幕的摄像机介绍Cameras后,本篇分享一下第2个已完工的 ...

  8. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  9. ACM: NBUT 1646 Internet of Lights and Switches - 二进制+map+vector

    NBUT 1646 Internet of Lights and Switches Time Limit:5000MS     Memory Limit:65535KB     64bit IO Fo ...

随机推荐

  1. supervisord监控服务必备命令

    supervisord(http://supervisord.org/introduction.html)是一个非常优秀的进程管理工具,使用Python开发.它可以在类UNIX系统的方式让用户来准确地 ...

  2. 来不及说什么了,Python 运维开发剁手价仅剩最后 2 天

    51reboot 运维开发又双叒叕的搞活动了—— Python 运维开发 18 天训练营课程, 剁手价1299 最后2天 上课方式:网络直播/面授(仅限北京) DAY1 - DAY4 Python3 ...

  3. React之父子组件传递和其它一些要点

    react是R系技术栈中最基础同时也是最核心的一环,2年不到获取了62.5k star(截止到目前),足可见其给力程度.下面对一些react日常开发中的注意事项进行罗列. React的组件生命周期 r ...

  4. ireportdesigner下载页面

    iReport主页:http://community.jaspersoft.com/project/ireport-designer iReport下载地址:http://sourceforge.ne ...

  5. Redis常用操作-------Set(集合)

    1.SADD key member [member ...] 将一个或多个 member 元素加入到集合 key 当中,已经存在于集合的 member 元素将被忽略. 假如 key 不存在,则创建一个 ...

  6. 12.9 Daily Scrum

    在一些实现上,开发人员提出了意见,经过讨论后,我们决定取消“推荐餐厅”的功能,增加了“菜谱分类”的功能. 同时更新了相关人员的任务.   Today's Task Tomorrow's Task 丁辛 ...

  7. C 实现选择排序

    一.选择排序的思想 假设有一个7元素的数组 [11, 24, 5, 17, 2, 8, 20],我们通过选择排序来从小到大排序. 思想是进行7次外循环从0-->6,每一次又是一个内循环,从i+1 ...

  8. 牛客OI周赛7-提高组

    https://ac.nowcoder.com/acm/contest/371#question A.小睿睿的等式 #include <bits/stdc++.h> using names ...

  9. redis演练

    如何查看所有的key:keys * 如何查询某个key的value:get keyname

  10. [转帖]Gartner预测2019年全球IT支出将达到3.8万亿美元

    Gartner预测2019年全球IT支出将达到3.8万亿美元 http://server.zhiding.cn/server/2019/0130/3115439.shtml 全球领先的信息技术研究和顾 ...