CF294C Shaass and Lights
题目大意:
有n盏灯,(0<=n<=1000),有m盏已经点亮,每次只能点亮与已经点亮的灯相邻的灯,求总方案数,答案对1e9+7取模
第一行:两个整数n,m表示灯的总数和已点亮的灯的数目 第二行m个数,表示已点亮的灯的编号
分析:
我们可以借助已经被点亮的灯作为分界点,找到若干个长度不为0的开区间。
对于两边都有开着的灯的区间,我们点亮它每次可以点亮最左边一盏或者最右边一盏,而最后一盏灯只有一种方法,所以点亮长度为len的区间的方案数为:2^(len-1)
特别地,对于两端的区间(一边有灯开着,一边是边界(1或者n)),只有一种方案数(顺着一路点下去)
根据乘法原理,可以先计算出ans*=2^(len2-1)2^(len-2-1)...2^(len(cnt-1)-1)注意开始的时候是i=2,最后一段是i=cnt-1;(最初最末两端算上是没有意义的)
但是由于点灯的时候可以交叉在每个区间内点灯,所以这样的ans还是少了很多。
所以我们重新这样考虑: 考虑将每个区间内考虑成颜色相同的len个球,不同区间球的颜色不同。每一个排列可以当做是一个指令,不同的合法的指令是不同的方案数。
容易知道最初的方案数为:(n-m)!我们将它处理成多重集合的排列,(n-m)!/len1!len2!...lencnt!。这样保证了每个区间内的同一种颜色的球的“单纯相对顺序”(只是这些球之间交换顺序)变化都算作是一种方案。
但是一个区间内,并不是一种方案,对于len的球数,可以有2^(len-1)种合法排列,利用乘法原理再将它们相乘,就可以得出正确的答案。
(需要:快速幂,乘方的乘法逆元) 附代码:
#include<bits/stdc++.h>
#define ll long long
#define int long long
using namespace std;
const int mod=1e9+;
const int N=;
int n,m;
int len[N];//区间长度;
ll fac[N];//阶乘;
ll ifac[N];//阶乘逆元;
ll qm(int x,int y)
{
ll base=x;
ll ans=;
while(y)
{
if(y&) ans=(ans*base)%mod;
base=(base*base)%mod;
y>>=;
}
return ans%mod;
}//快速幂
int cnt;
ll anss=;
int h[N];
signed main()
{
scanf("%lld%lld",&n,&m);
int last=;
int x;
for(int i=;i<=m;i++)
{scanf("%lld",&h[i]);}
sort(h+,h+m+);//注意,编号可能不是单调的。
len[++cnt]=h[]-last-;
for(int i=;i<=m;i++)
{
if(h[i]-h[i-]>) len[++cnt]=h[i]-h[i-]-;
}
len[++cnt]=n-h[m];
for(int i=;i<=cnt-;i++)
anss=(anss*qm(,len[i]-))%mod;//先处理2^len
fac[]=;
ifac[]=;
for(int i=;i<=n-m;i++)
fac[i]=(fac[i-]*i)%mod;//阶乘
ifac[n-m]=qm(fac[n-m],mod-)%mod;//费马小定理先算n-m
for(int i=n-m-;i>=;i--)
ifac[i]=(ifac[i+]*(i+))%mod;//递推算阶乘逆元
anss=(anss*fac[n-m])%mod;
for(int i=;i<=cnt;i++)
anss=(anss*ifac[len[i]])%mod;//多重集合排列处理
printf("%lld",anss%mod);
return ;
}
还有一种组合数学的思想,
就是利用乘法原理,每次乘上:在每次剩余的位置放上len个数的方案数。
友链:https://blog.csdn.net/qq_38538733/article/details/76409237
CF294C Shaass and Lights的更多相关文章
- CF294C Shaass and Lights(排列组合)
题目描述 There are n n n lights aligned in a row. These lights are numbered 1 1 1 to n n n from left to ...
- C. Shaass and Lights 组合数学
http://codeforces.com/contest/294/problem/C 把那个数组n分段了,那么有两类. 1.开头和端点那些,就是只有一端在开始的,这个时候,要开完这些灯,只能循序渐进 ...
- 【Cf #178 A】Shaass and Lights(组合数)
考虑两个灯之间的暗灯,能从左边或右边点亮两种顺序,而最左端或最右端只有一种点亮顺序. 先不考虑点灯顺序,总共有n - m个灯要点亮,对于连续的一段暗灯,他们在总的点灯顺序中的是等价的,于是问题就可以抽 ...
- OUC_OptKernel_oshixiaoxiliu_好题推荐
poj1112 Team Them Up! 补图二分图+dp记录路径codeforces 256A Almost Arithmetical Progression dp或暴力 dp[i][j] = d ...
- Codeforces Round #178 (Div. 2)
A. Shaass and Oskols 模拟. B. Shaass and Bookshelf 二分厚度. 对于厚度相同的书本,宽度竖着放显然更优. 宽度只有两种,所以枚举其中一种的个数,另一种的个 ...
- HDOJ 4770 Lights Against Dudely
状压+暴力搜索 Lights Against Dudely Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights
[我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights 既上一篇分享了中文字幕的摄像机介绍Cameras后,本篇分享一下第2个已完工的 ...
- poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8481 Accepted: 5479 Description In an ...
- ACM: NBUT 1646 Internet of Lights and Switches - 二进制+map+vector
NBUT 1646 Internet of Lights and Switches Time Limit:5000MS Memory Limit:65535KB 64bit IO Fo ...
随机推荐
- RabbitMQ TroubleShooting
RabbitMQ是一款优秀的消息队列中间件,提供了稳定.监控完善的产品,但是软件就会有bug.为了前进路径可以畅通,我们必须了解出现的一些故障的快速处理方式,毕竟在生产环境,时间就是生命,尽快的处理是 ...
- SpringBoot日记——ElasticSearch全文检索
看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...
- Linux运维笔记-日常操作命令总结(1)
在linux日常运维中,我们平时会用到很多常规的操作命令. 查看服务器的外网ip [root@redis-new01 ~]# curl ifconfig.me [root@redis-new01 ~] ...
- 常用rsync命令操作梳理
作为一个运维工程师,经常可能会面对几十台.几百台甚至上千台服务器,除了批量操作外,环境同步.数据同步也是必不可少的技能.说到“同步”,不得不提的利器就是rsync.rsync不但可以在本机进行文件同步 ...
- 几何学观止(Riemann流形部分)
上承这个页面,相较之前,增加了古典的曲线曲面论,这部分介绍得很扼要,Riemann流形介绍得也很快,花了仅仅30页就介绍到了Gauss-Bonnet公式.同时配上了提示完整的习题. 几何学观止-Rie ...
- Echarts学习求教
有没有人用过百度的Echarts?刚开始接触,下面这段代码怎么理解啊,新手求指教: myChart.showLoading();$.get('data/asset/data/les-miserable ...
- 《Linux内核分析》第七周学习总结 可执行程序的装载
第七周.可执行程序的装载 一.可执行程序是如何产生的? (1).c文件gcc汇编形成.s和.asm汇编代码: (2)汇编代码经过gas变成.o目标文件: (3)目标文件变成可执行文件: (4)可执行文 ...
- github第一次作业链接
https://github.com/xuhuzi/test/blob/master/test1 https://github.com/xuhuzi/test/blob/master/test2 ht ...
- Linux入门笔记
1.Linux常用快捷键 按键 作用 Ctrl+d 键盘输入结束或退出终端 Ctrl+s 暂停当前程序,暂停后按下任意键恢复运行 Ctrl+z 将当前程序放到后台运行,恢复到前台为命令fg Ctrl ...
- 作业二 —— 分布式版本控制系统Git的安装与使用
作业要求源于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103 1.安装Git,配置用户名与邮箱. 安装Windows版的Git ...