HDU 4289 Control (网络流,最大流)
HDU 4289 Control (网络流,最大流)
Description
You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD(Weapon of Mass Destruction)from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
all traffic of the terrorists must pass at least one city of the set.
sum of cost of controlling all cities in the set is minimal.
You may assume that it is always possible to get from source of the terrorists to their destination.
Input
There are several test cases.
The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.
The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 10 7.
The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.
Please process until EOF (End Of File).
Output
For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
See samples for detailed information.
Sample Input
5 6
5 3
5
2
3
4
12
1 5
5 4
2 3
2 4
4 3
2 1
Sample Output
3
Http
HDU:https://vjudge.net/problem/HDU-4289
Source
网络流,最大流,最小割
题目大意
在一个无向图中,每一个点都有一个点权。现在给定起点S和终点T,求割去若干个点后S与T不连通的最小割去点权和。
解决思路
根据最大流最小割定理,求解出最大流即为最小割(理性理解一下,确实如此)
因为本题的权在点上,所以把点i拆成两个,i和i+n,这两个点之间边的容量就是点权。而其他的边的容量都置为无穷大。然后我们以S为源点,T+n为汇点,求解出最大流就是最小割。
这里使用Dinic实现最大流,可以参考这篇文章
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=600;
const int maxM=20001*20;
const int inf=2147483647;
class Edge
{
public:
int u,v,flow;
};
int n,m;
int S,T;
int cnt=-1;
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int depth[maxN];
int Q[maxM];
int cur[maxN];
void Add_Edge(int u,int v,int flow);
bool bfs();
int dfs(int u,int flow);
int main()
{
while (cin>>n>>m)
{
cnt=-1;
memset(Head,-1,sizeof(Head));
scanf("%d%d",&S,&T);//源点和汇点
T=T+n;//这里要把T变成拆点后的后一个点
for (int i=1;i<=n;i++)
{
int cost;
scanf("%d",&cost);
Add_Edge(i,i+n,cost);//读入点权,并拆点连边
}
for (int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);//读入边,连边,注意是无向的
Add_Edge(u+n,v,inf);
Add_Edge(v+n,u,inf);
}
int Ans=0;//求解最大流,最大流就是最小割
while (bfs())
{
for (int i=1;i<=2*n;i++)
cur[i]=Head[i];
while (int di=dfs(S,inf))
Ans+=di;
}
printf("%d\n",Ans);
}
return 0;
}
void Add_Edge(int u,int v,int flow)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].flow=flow;
cnt++;
Next[cnt]=Head[v];
Head[v]=cnt;
E[cnt].u=v;
E[cnt].v=u;
E[cnt].flow=0;
return;
}
bool bfs()
{
memset(depth,-1,sizeof(depth));
int h=1,t=0;
Q[1]=S;
depth[S]=1;
do
{
t++;
int u=Q[t];
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==-1)&&(E[i].flow>0))
{
depth[v]=depth[u]+1;
h++;
Q[h]=v;
}
}
}
while (t!=h);
if (depth[T]==-1)
return 0;
return 1;
}
int dfs(int u,int flow)
{
if (u==T)
return flow;
for (int &i=cur[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if ((depth[v]==depth[u]+1)&&(E[i].flow>0))
{
int di=dfs(v,min(flow,E[i].flow));
if (di>0)
{
E[i].flow-=di;
E[i^1].flow+=di;
return di;
}
}
}
return 0;
}
HDU 4289 Control (网络流,最大流)的更多相关文章
- hdu 4289 Control 网络流
题目链接 给出一些点, 每个点有一个权值, 给出一些边, 起点以及终点, 去掉一些点使得起点和终点不连通, 求最小的val. 拆点, 把一个点s拆成s和s', 之间建一条边, 权值为点权. 对于一条边 ...
- hdu 4289 Control(最小割 + 拆点)
http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others) Mem ...
- HDU 4289 Control(最大流+拆点,最小割点)
题意: 有一群恐怖分子要从起点st到en城市集合,你要在路程中的城市阻止他们,使得他们全部都被抓到(当然st城市,en城市也可以抓捕).在每一个城市抓捕都有一个花费,你要找到花费最少是多少. 题解: ...
- HDU 4289 Control (最小割 拆点)
Control Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- HDU 4289 Control 最小割
Control 题意:有一个犯罪集团要贩卖大规模杀伤武器,从s城运输到t城,现在你是一个特殊部门的长官,可以在城市中布置眼线,但是布施眼线需要花钱,现在问至少要花费多少能使得你及时阻止他们的运输. 题 ...
- Leapin' Lizards [HDU - 2732]【网络流最大流】
题目链接 网络流直接最大流就是了,只是要拆点小心一个点的流超出了原本的正常范围才是. #include <iostream> #include <cstdio> #includ ...
- HDU 4289 Control
最小割 一个点拆成两个 AddEdge(i,i+N,x); 原图中的每条边这样连 AddEdge(u+N,v,INF); AddEdge(v+N,u,INF); S是源点,t+N是汇点.最大流就是答案 ...
- HDU - 4289 Control (Dinic)
You, the head of Department of Security, recently received a top-secret information that a group of ...
- hdu 4289 最大流拆点
大致题意: 给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路: 最基础的拆点最大 ...
随机推荐
- element-ui + vue + node.js 与 服务器 Python 应用的跨域问题
跨越问题解决的两种办法: 1. 在 config => index.js 中配置 proxyTable 代理: proxyTable: { '/charts': { target: 'http: ...
- CentOS7下单机部署RabbltMQ环境的操作记录
一.RabbitMQ简单介绍在日常工作环境中,你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务 ...
- Mysql之binlog日志说明及利用binlog日志恢复数据操作记录
众所周知,binlog日志对于mysql数据库来说是十分重要的.在数据丢失的紧急情况下,我们往往会想到用binlog日志功能进行数据恢复(定时全备份+binlog日志恢复增量数据部分),化险为夷! 一 ...
- 个人阅读作业Week5
一.总结体会 团队项目已经进行了很多周,我们团队从刚开始的基础薄弱到现在的大家都可以运用Android来编写程序,共同完成一个app的开发使用. 刚开始做团队项目之时,我们团队就开了一个会,确定了以后 ...
- BugPhobia启程篇章:需求分析与功能定位
0x01 :引言 If you weeped for the missing sunset, you would miss all the shining stars 我看着大巴缓缓的驶过街角,我躲在 ...
- 《Linux及安全》课程实践二
编译生成新内核 一.实践原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集成在一起,效率很高,但可扩展 ...
- mybaits拦截器+自定义注解
实现目的:为了存储了公共字典表主键的其他表在查询的时候不用关联查询(所以拦截位置位于mybaits语句查询得出结果集后) 项目环境 :springboot+mybaits 实现步骤:自定义注解——自定 ...
- JavaScript使用jsonp实现跨域
为什么要把ajax跨域写一下呢,因为ajax跨域并不是想跨就能跨的.因为为了安全,ajax是不允许跨域的. 举个例子,你有一个卖水果的网站,你的ajax请求另一个网站提供的图片,正常的时候,图片是一个 ...
- SVG to Image in js
SVG to Image in js SVG to Image https://image.online-convert.com/convert-to-svg https://stackoverflo ...
- zabbix2.2 - FromDual.MySQL.check" became not supported
升级zabbix后发现zabbix server日志中多个实例报错如下: 27974:20171227:113001.724 item "实例name:FromDual.MySQL.chec ...