题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值。

题解:除法分块思想的应用。

\(x\%y=x-y\lfloor {x\over y}\rfloor\),因此只需快速求出 \(\sum\limits_{i=1}^n {k\over i}\) 即可。

引理:\(i\in [1,k], {k\over i}\) 最多只有不超过 \(2\sqrt k\) 个不同的值。(分情况讨论即可得出)

现在,只需找出每一段的起点和终点即可根据等差数列求和的方式来在 \(O(\sqrt(n))\) 的时间内求得答案。

引理:\(i\in [x,\lfloor k/{\lfloor k/x \rfloor}\rfloor]\) 时,\(k \over i\) 的值都相等。

代码如下

#include <bits/stdc++.h>
using namespace std; long long n,k,ans; int main(){
scanf("%lld%lld",&n,&k);
ans=n*k;
for(int l=1,r;l<=n;l=r+1){
r=k/l?min(k/(k/l),n):n;
ans-=(k/l)*(l+r)*(r-l+1)/2;
}
printf("%lld\n",ans);
return 0;
}

【洛谷P2261】余数求和的更多相关文章

  1. 洛谷 - P2261 - 余数求和

    https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...

  2. 洛谷P2261 余数求和

    整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...

  3. 洛谷P2261余数求和

    传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...

  4. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  5. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  6. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  7. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  8. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  9. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

随机推荐

  1. 查看服务器系统资源(cpu,内容)利用率前几位的进程的方法

    在日常运维工作中,我们经常需要了解服务器上的系统资源的使用情况,要清楚知道一些重要进程所占的资源比例.这就需要熟练掌握下面几个命令的使用: 1)查看占用CPU最高的5个进程 # ps aux | so ...

  2. 第六次Scrum meeting

    第六次Scrum  meeting 任务及完成度: 成员 12.21 12.22 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(98%) 任务1114-1:完成对网页数 ...

  3. Ajax写成绩批量录入

    1.jsp,ajax的循环调用,必须要递归,否则会出错. <%@ page language="java" import="java.util.*" pa ...

  4. 小学四则运算APP 第一阶段冲刺

    需求分析 1.相关系统分析员向用户初步了解需求,然后用word列出要开发的系统的大功能模块,每个大功能模块有哪些小功能模块,对于有些需求比较明确相关的界面时,在这一步里面可以初步定义好少量的界面.[1 ...

  5. git 的安装及使用

    一.Git的安装和使用 1.1 Linux下版本库的创建 1.1.1 创建一个版本库 repository,在一个合适的地方创建一个空目录: root@zengyue:/# mkdir -p /hom ...

  6. SQL语句及5.7.2 mysql 用户管理

    一.用户的定义 1.1 用户名+主机域 此处为5.7.2版本的mysql当中password字段已改为authentication_string mysql> select user,host, ...

  7. 在centos7虚拟机上挂载镜像,并设置yum源(包括遇到的问题)

    挂载镜像方法很简单: mkdir /etc/a mount /dev/cdrom /etc/a 查看挂载情况  : df -h 修改yum源文件 : 先把 CentOS-Base.repo 文件名改一 ...

  8. 基于SSH实现员工管理系统之框架整合篇

    本篇文章来源于:https://blog.csdn.net/zhang_ling_yun/article/details/77803178 以下内容来自慕课网的课程:基于SSH实现员工管理系统之框架整 ...

  9. WIN10快捷键

    WIN10快捷键 多桌面切换:WIN + CTRL +  ←/→ 桌面横竖屏转向:ALT + CTRL +  ←/→

  10. PHP 4种输出的方式

    <?php //测试用的数组 $info = array('11'=>'aaa', '22'=>'bbb', '33'=>'ccc'); //第一种,将整个数组作为一个对象输出 ...