【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值。
题解:除法分块思想的应用。
\(x\%y=x-y\lfloor {x\over y}\rfloor\),因此只需快速求出 \(\sum\limits_{i=1}^n {k\over i}\) 即可。
引理:\(i\in [1,k], {k\over i}\) 最多只有不超过 \(2\sqrt k\) 个不同的值。(分情况讨论即可得出)
现在,只需找出每一段的起点和终点即可根据等差数列求和的方式来在 \(O(\sqrt(n))\) 的时间内求得答案。
引理:\(i\in [x,\lfloor k/{\lfloor k/x \rfloor}\rfloor]\) 时,\(k \over i\) 的值都相等。
代码如下
#include <bits/stdc++.h>
using namespace std;
long long n,k,ans;
int main(){
scanf("%lld%lld",&n,&k);
ans=n*k;
for(int l=1,r;l<=n;l=r+1){
r=k/l?min(k/(k/l),n):n;
ans-=(k/l)*(l+r)*(r-l+1)/2;
}
printf("%lld\n",ans);
return 0;
}
【洛谷P2261】余数求和的更多相关文章
- 洛谷 - P2261 - 余数求和
https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...
- 洛谷P2261 余数求和
整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...
- 洛谷P2261余数求和
传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
随机推荐
- 树莓派Opencv张正友棋盘标定法
make.Makefile cc = gcc #最简易的makefile文件,这个可以用来进行文件之间的简易构建和链接,生成我们所需要的执行文件: prom = calc deps = $(shell ...
- windows平台下编辑的内容传到linux平台出现中文乱码的解决办法
现象说明:在windows下编辑的内容,上传到linux平台下出现中文乱码.如下: 在windows平台编写haha.txt文件,内容如下: 上传到linux平台,出现中文乱码,如下: 基本上面出现的 ...
- python-lambda用法
前言: lambda函数也叫匿名函数,即,函数没有具体的名称. 一.基础 lambda语句构建的其实是一个函数对象.匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果 ...
- 20135327--linux内核分析 实践二
内核模块编译 1.实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集成在一起,效率很高,但可扩展性 ...
- HDOJ2017_字符串统计
这是一道水题 HDOJ2017_字符串统计 #include<iostream> #include<string> #include<stdio.h> #inclu ...
- Java实现小学四则运算练习系统(UI)
github项目地址 :https://github.com/feser-xuan/Arithmetic_test3_UI 小伙伴的博客链接:http://www.cnblogs.com/fukang ...
- 属性动画总结(Property Animation)
一.概述 属性动画可以作用在View的属性上,对属性进行修改,而且不要求对应的属性一定是有显示效果的. 二.属性动画的实现方式 1.基础的类Animator Animator是一个抽象类,是属性动画的 ...
- linux中tomcat修改错误日志路径
涉及文件 log4j.properties (一般开发将该文件放在项目的缺省目录即源包下,在文件系统里,就是在项目的/src/java目录下,缺省的文件名是log4j.properties,这样项 ...
- 03 基于umi搭建React快速开发框架(封装列表增删改查)
前言 大家在做业务系统的时候,很多地方都是列表增删改查,做这些功能占据了大家很长时间,如果我们有类似的业务,半个小时就能做出一套那是不是很爽呢. 这样我们就可以有更多的时间学习一些新的东西.我们这套框 ...
- StringBuilder String string.Concat 字符串拼接速度再议
首先看测试代码: public class StringSpeedTest { "; public string StringAdd(int count) { string str = st ...