【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值。
题解:除法分块思想的应用。
\(x\%y=x-y\lfloor {x\over y}\rfloor\),因此只需快速求出 \(\sum\limits_{i=1}^n {k\over i}\) 即可。
引理:\(i\in [1,k], {k\over i}\) 最多只有不超过 \(2\sqrt k\) 个不同的值。(分情况讨论即可得出)
现在,只需找出每一段的起点和终点即可根据等差数列求和的方式来在 \(O(\sqrt(n))\) 的时间内求得答案。
引理:\(i\in [x,\lfloor k/{\lfloor k/x \rfloor}\rfloor]\) 时,\(k \over i\) 的值都相等。
代码如下
#include <bits/stdc++.h>
using namespace std;
long long n,k,ans;
int main(){
scanf("%lld%lld",&n,&k);
ans=n*k;
for(int l=1,r;l<=n;l=r+1){
r=k/l?min(k/(k/l),n):n;
ans-=(k/l)*(l+r)*(r-l+1)/2;
}
printf("%lld\n",ans);
return 0;
}
【洛谷P2261】余数求和的更多相关文章
- 洛谷 - P2261 - 余数求和
https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...
- 洛谷P2261 余数求和
整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...
- 洛谷P2261余数求和
传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
随机推荐
- 免费的 Vue.js 入门与进阶视频教程
这是我免费发布的高质量超清「Vue.js 入门与进阶视频教程」. 全网最好的.免费的 Vue.js 视频教程,课程基于 Vue.js 2.0,由浅入深,最后结合实际的项目进行了最棒的技术点讲解,此课程 ...
- Gitblit版本服务器环境部署记录
Gitblit介绍Gitblit 是一个纯 Java 库用来管理.查看和处理 Git 资料库.相当于 Git 的 Java 管理工具,支持linux系统.Git是分布式版本控制系统,它强调速度.数据一 ...
- Educational Codeforces Round 49 (Rated for Div. 2)A到C题
A题意 给你t表示有t组测试数据,每组数据给你一个含小写字母的字符串,每个字符必须变为它相邻的字符,问最后是否能变成回文串.a不能变成z,反过来也不行 分析 只需对对称位置判断差是否小于2且不等于1, ...
- js 时间戳转换为日期格式
//将1525854409000类型的时间转换成“yyyy-MM-dd”或“yyyy-MM-dd hh:mm:ss” //info.birthday是后台获取到的Date类型的出生日期数据, / ...
- Asp.net框架与SpringMvc框架简单分析
(此文为自我总结,错误很多请勿借鉴) 1.就前两天分析SpringMvc框架中是通过controler来实现跳转页面,通过mapping来实现数据连接 分析的方法又通过java的类之间进行相互调用,个 ...
- Python学习笔记(三)——条件语句、循环语句
注:需注意代码的缩进格式 注:需注意代码的缩进格式 注:需注意代码的缩进格式 Python 与其他语言最大的区别就是,Python 的代码块不使用大括号 {} 来控制类,函数以及其他逻辑判断.pyth ...
- JSTLView快速国际化(SpringMVC)
JSTLView:快速国际化:只要导入了jstl的jar包,以前默认创建的InternalResouceView都会被使用jstlView替代: 国际化的新步骤: 1).写好 ...
- Linux: HowTo See Directory Tree Structure
https://www.cyberciti.biz/faq/linux-show-directory-structure-command-line/ Linux: HowTo See Director ...
- html 统一资源定位器(url)和url编码
url,即统一资源定位器,也叫网址. 点击<a>标签就会连接到url指定的服务器web资源,文档或者其它数据: url的命名规则:url可是域名或者IP地址 url="shcem ...
- fopen
转自http://blog.sina.com.cn/s/blog_4b986f1a0101349k.html matlab中fopen函数在指定文件打开的实例如下: *1)“fopen”打开文件,赋予 ...