Problem Description

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

Output

输出 一行有两个数, 最短距离及其花费。

Sample Input

3 2 1 2 5 6 2 3 4 5 1 3 0 0

Sample Output

9 11

再加一组测试数据:

Sample Input

5 7

1 2 5 5

2 3 4 5

1 3 4 6

3 4 2 2

3 5 4 7

4 5 2 4

1 3 4 4

1 5

Sample Output

8 10

 #include <stdio.h>
#include <string.h> #define MAX 1005
#define INF 200000000 struct Route //路线结构体(包括距离和花费)
{
int dis;
int fare;
}; void dijkstra(struct Route map[][MAX],int dist[],int value[],int start,int end)
{
int s[MAX]; //集合,用于存放已找出的顶点
int u;
int minDis;
int minVal;
int i,j;
memset(s,,sizeof(s));
s[start] = ; //将起点放入集合
for (i=; i<MAX; i++)
{
//初始化dist和value
dist[i] = map[start][i].dis;
value[i] = map[start][i].fare;
}
//将起点的dist和value置为0
dist[start] = ;
value[start] = ;
while ()
{
u = start;
minDis = INF;
minVal = INF;
for (i=; i<MAX; i++)
{
if (dist[i]<minDis&&!s[i]) //找出距起点最近的点
{
minVal = value[i];
minDis = dist[i];
u = i;
}
else if (dist[i]==minDis&&!s[i]&&value[i]<minVal) //如果距离相等,则选择花费最少的
{
minVal = value[i];
minDis = dist[i];
u = i;
}
}
s[u] = ;
if (s[end]==) //当找出终点就结束
return;
for (i=; i<MAX; i++) //利用找出的点更新其它点到起点的距离和花费
{
if (!s[i]&&dist[i]>map[u][i].dis+dist[u])
{
dist[i] = map[u][i].dis+dist[u];
value[i] = map[u][i].fare+value[u];
}
else if (!s[i]&&dist[i]==map[u][i].dis+dist[u]) //如果距离相等,则选择花费最少的
if (value[i] > map[u][i].fare+value[u])
{
dist[i] = map[u][i].dis+dist[u];
value[i] = map[u][i].fare+value[u];
}
}
}
} int main()
{
struct Route map[MAX][MAX]; //地图的邻接矩阵
int dist[MAX]; //存放起点到各点的距离
int value[MAX]; //存放起点到各点的花费
//int pre[MAX];
int n,m; //n个点,m条边
int a,b,d,p;
int s,t; //起点,终点
int i,j;
while ()
{
scanf("%d%d",&n,&m);
if (n==&&m==)
break;
for (i=; i<=n; i++)
for (j=; j<MAX; j++)
{
map[i][j].dis = INF;
map[i][j].fare = INF;
}
for (i=; i<MAX; i++)
{
dist[i] = INF;
value[i] = INF;
}
for (i=; i<=m; i++) //将邻接矩阵初始化
{
scanf("%d%d%d%d",&a,&b,&d,&p);
if (d < map[a][b].dis)
{
//如果两点间有重边,则选出最短距离
map[a][b].dis = map[b][a].dis = d;
map[a][b].fare = map[b][a].fare = p;
}
else if (d == map[a][b].dis&&p < map[a][b].fare)
{
//重边距离相等,则选出花费最少的
map[a][b].dis = map[b][a].dis = d;
map[a][b].fare = map[b][a].fare = p;
}
}
scanf("%d%d",&s,&t);
dijkstra(map,dist,value,s,t);
printf("%d %d\n",dist[t],value[t]);
}
return ;
}

hdu-3790 最短路径问题(双重权值)的更多相关文章

  1. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

  2. 最短路径问题 HDU - 3790 (Dijkstra算法 + 双重权值)

    参考:https://www.cnblogs.com/qiufeihai/archive/2012/03/15/2398455.html 最短路径问题 Time Limit: 2000/1000 MS ...

  3. HDU 3790(两种权值的迪杰斯特拉算法)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=3790 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    ...

  4. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  5. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  6. HDU-3790 最短路径问题(双重权值)

    Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的.   Inp ...

  7. hdu 1565&hdu 1569(网络流--最小点权值覆盖)

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. 题解报告:hdu 3790 最短路径问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  9. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. SpringDataSolr 过滤(或者叫筛选)查询

    // 被本类调用 private Map searchList(Map searchMap) { // 1.1关键字查询 SimpleHighlightQuery highlightQuery = n ...

  2. 教你怎么看网站是用react搭建的

    概述 SPA和react可以说是web开发的分水岭,我一直在寻找判断网站是普通网站还是SPA抑或是react的方法.今天突然找到一个判断网站是不是react搭建的简便方法.现在记录下来供以后开发时参考 ...

  3. spring框架学习笔记6:JDBC模板

    JDBC模板:Spring中对数据库的操作. 这一部分对熟悉DBUtils的QueryRunner的开发者来说,非常简单 这是以前我简单写的dbutils的知识: http://www.cnblogs ...

  4. iOS- XKZoomingView 简单的图片缩放预览,支持横屏、长图【手势:单击、双击、放大缩小】

    XKZoomingView.h #import <UIKit/UIKit.h> @interface XKZoomingView : UIScrollView /** 本地图片 */ @p ...

  5. 3-5 Vue中的样式绑定

    Vue中的样式绑定: 本案例,简单设计一个<div>的点击绑定事件来改变div的样式效果 方法一:[class] ①(class和对象的绑定) //如上,运用class和一个对象的形式来解 ...

  6. 【2019北京集训3】逻辑 树剖+2-sat

    题目大意:有一颗有$m$个叶子节点的二叉树. 对于叶子节点$i$,$x[i]=(a[i]\ xor\ V_{p[i]})or(b[i]\ xor\ V_{q[i]})$ 对于非叶子节点$i$,$x[i ...

  7. 今天是JVM的生日,来了解下JVM的发展历史吧

    1991年4月,由James Gosling主导的团队创造了Oak语言,java的前身,1995年5月23号,Oak语言更名Java,并且提出那句注明的:”write Once,Run Anywher ...

  8. (转)Python中操作mysql的pymysql模块详解

    原文:https://www.cnblogs.com/wt11/p/6141225.html https://shockerli.net/post/python3-pymysql/----Python ...

  9. PowerShell 连接远程服务器

    >>服务端Enable-PSRemoting winrm quickconfig ————这个可能不需要 >>客户端Set-Item wsman:\localhost\Clie ...

  10. Java高并发之设计模式

    本文主要讲解几种常见并行模式, 具体目录结构如下图. 单例 单例是最常见的一种设计模式, 一般用于全局对象管理, 比如xml配置读写之类的. 一般分为懒汉式, 饿汉式. 懒汉式: 方法上加synchr ...