Miller Rabin素数检测
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<ctime>
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define INF 0x3f3f3f3f
typedef long long LL;
using namespace std;/* *************************************************
* Miller_Rabin 算法进行素数测试
* 速度快,可以判断一个 < 2^63 的数是不是素数
*
**************************************************/
const int S = ;
LL mult_mod(LL a,LL b,LL c)
{
a %= c;
b %= c;
LL ret = ;
LL tmp = a;
while(b)
{
if(b & )
{
ret += tmp;
if(ret > c)ret -= c;
}
tmp <<= ;
if(tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
LL pow_mod(LL a,LL n,LL mod)
{
LL ret = ;
LL temp = a%mod;
while(n)
{
if(n & )ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= ;
}
return ret;
}
bool check(LL a,LL n,LL x,LL t)
{
LL ret = pow_mod(a,x,n);
LL last = ret;
for(int i = ;i <= t;i++)
{
ret = mult_mod(ret,ret,n);
if(ret == && last != && last != n-)return true;
last = ret;
}
if(ret != )return true;
else return false;
}
bool MiLLer_Rabin(LL n)
{
if( n < )return false;
if( n == )return true;
if( (n&) == )return false;
LL x = n - ;
LL t = ;
while( (x&)== ){x >>= ; t++;}
srand(time(NULL));
for(int i = ;i < S;i++)
{
LL a = rand()%(n-) + ;
if( check(a,n,x,t) )
return false;
}
return true;
}
int main()
{
LL n, m;
while(cin >> n){
LL cnt=;
for(int i = ; i < n; i++){
cin >> m;
if(MiLLer_Rabin(m))
cnt++;
}
cout << cnt << endl;
}
}
Miller Rabin素数检测的更多相关文章
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
随机推荐
- 10本Java架构师必读书籍
1.大型网站系统与JAVA中间件实践 本书围绕大型网站和支撑大型网站架构的Java中间件的实践展开介绍. 从分布式系统的知识切入,让读者对分布式系统有基本的了解:然后介绍大型网站随着数据量.访问量增长 ...
- Oracle impdp的ignore及 fromuser / touser 功能
作者:eygle |English [转载时请标明出处和作者信息]|[恩墨学院 OCM培训传DBA成功之道]链接:http://www.eygle.com/archives/2009/09/oracl ...
- shell判断文件是否为空
[[ `cat a.log |wc -l` -eq 0 ]] && echo "file is empty"
- JMeter命令行监控CPU和内存资源
首先确定Agent启动成功 客户端
- Codeforces 109D String Transformation 字符串 哈希 KMP
原文链接https://www.cnblogs.com/zhouzhendong/p/CF109D.html 题目传送门 - CF109D 题意 给定两个字符串 $a,b$ ,求一组 $i,j$ 使得 ...
- Jenkins的介绍
在公司看见有的部门在使用这个工具,好奇一下,今天就开始学习一番. 1.官网 https://jenkins.io/ 2.介绍 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用 ...
- Hudson与Jenkins
Hudson是Jenkins的前身,它们都是基于Java开发的一种持续集成工具,用于监控程序重复的工作,包括: 1.持续的软件版本发布/测试项目. 2.监控外部调用执行的工作. Hudson的特性 1 ...
- Redis闪退解决办法
复杂办法! cmd 进入命令,cd进入redis文件 输入:redis-server.exe redis.windows.conf,手动开启! 简单办法,删除重新下载! 不确定办法如下 1.在解压的r ...
- go编译go-gtk,出现invalid flag in pkg-config --libs: -Wl,-luuid提示
go编译go-gtk 使用go编译go-gtk,直接编译会出现错误: pkg-config --cflags -- gdk-2.0 gthread-2.0 pkg-config --l ...
- 前端之HTML(一)
最近学到前端的一些知识,感觉挺有意思的.总结一下常用的知识.这些只是最简单的东西. 一 HTML,CSS,JS的关系 一个基本的网站包含很多网页,一个网页又有html,css,js组成. html 是 ...