#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<ctime>
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define INF 0x3f3f3f3f
typedef long long LL;
using namespace std;/* *************************************************
* Miller_Rabin 算法进行素数测试
* 速度快,可以判断一个 < 2^63 的数是不是素数
*
**************************************************/
const int S = ;
LL mult_mod(LL a,LL b,LL c)
{
a %= c;
b %= c;
LL ret = ;
LL tmp = a;
while(b)
{
if(b & )
{
ret += tmp;
if(ret > c)ret -= c;
}
tmp <<= ;
if(tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
LL pow_mod(LL a,LL n,LL mod)
{
LL ret = ;
LL temp = a%mod;
while(n)
{
if(n & )ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= ;
}
return ret;
}
bool check(LL a,LL n,LL x,LL t)
{
LL ret = pow_mod(a,x,n);
LL last = ret;
for(int i = ;i <= t;i++)
{
ret = mult_mod(ret,ret,n);
if(ret == && last != && last != n-)return true;
last = ret;
}
if(ret != )return true;
else return false;
}
bool MiLLer_Rabin(LL n)
{
if( n < )return false;
if( n == )return true;
if( (n&) == )return false;
LL x = n - ;
LL t = ;
while( (x&)== ){x >>= ; t++;}
srand(time(NULL));
for(int i = ;i < S;i++)
{
LL a = rand()%(n-) + ;
if( check(a,n,x,t) )
return false;
}
return true;
}
int main()
{
LL n, m;
while(cin >> n){
LL cnt=;
for(int i = ; i < n; i++){
cin >> m;
if(MiLLer_Rabin(m))
cnt++;
}
cout << cnt << endl;
}
}

Miller Rabin素数检测的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  7. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  8. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

  9. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

随机推荐

  1. HDU 1074 Doing Homework(DP状态压缩)

    题意:有n门功课需要完成,每一门功课都有时间期限以及你完成所需要的时间,如果完成的时间超出时间期限多少单位,就会被减多少学分,问以怎样的功课完成顺序,会使减掉的学分最少,有多个解时,输出功课名字典序最 ...

  2. 设置VMware10开机自启动并同时启动虚拟机镜像系统

    首先,进入VMware Workstation的安装目录 C:\Program Files (x86)\VMware\VMware Workstation

  3. 关于window.open窗口的resize事件

    jQuery 事件 - resize() 方法 当调整浏览器窗口的大小时,发生 resize 事件. resize() 方法触发 resize 事件,或规定当发生 resize 事件时运行的函数. & ...

  4. PHP算法排序之快速排序、冒泡排序、选择排序、插入排序性能对比

    <?php //冒泡排序 //原理:从倒数第一个数开始,相邻的两个数比较,后面比前面的小,则交换位置,一直到比较第一个数之后则最小的会排在第一位,以此类推 function bubble_sor ...

  5. BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...

  6. 初窥Java之二

    一.java中存在三大注释: 第一大注释:  单行注释   一般用于信息量比较少的地方 第二大注释:  多行注释   一般用于信息比较多的地方 多行注释注意事项:1.多行注释的开始行与结尾行不能写注释 ...

  7. css3 的新属性

    1,动画,animate------>//动画-名称-动画的时间间隔-以什么方式播放-循环 .right{ animate:dropdown 4px 5px #000; // x的偏移值 y的偏 ...

  8. Apache系列:Apache的全局配置

    配置文件组成: 整个配置文件由3段组成: (1)全局配置:对主服务器或虚拟机都有效,且有些功能是服务器自身工作属性: (2)主服务器:主站属性: (3)虚拟主机:虚拟主机及属性定义 注:第二段和第三段 ...

  9. ThreadPoolExecutor 入参 corePoolSize 和 maximumPoolSize 的联系

    前言 我们可以通过 java.util.concurrent.ThreadPoolExecutor 来创建一个线程池: new ThreadPoolExecutor(corePoolSize, max ...

  10. python 3.6 + numpy + matplotlib + opencv + scipy 安装

    首先,下载并安装 python3.6: 然后,在网址http://www.lfd.uci.edu/~gohlke/pythonlibs/ 上 分别下载 numpy.scipy.matplotlib.o ...