P1879 [USACO06NOV]玉米田Corn Fields

题目描述

农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ N ≤ 12)\),每一格都是一块正方形的土地。\(John\)打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是\(John\)不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

\(John\)想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数\(M\)和\(N\),用空格隔开。

第2到第\(M+1\)行:每行包含\(N\)个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为\(0\)或\(1\),是\(1\)的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以\(100,000,000\)的余数。


做的第一道状压\(DP\),总结一下。

\(dp[i][j]\)表示第\(i\)行状态\(j\)(用二进制代表每一位是否种植,例如01010,就是当前行2和4种田)

转移:\(dp[i][j]=\sum dp[i-1][k]\),其中\(k\)为上一行的合法状态。

复杂度:\(O(2^{2*m}*n*m)\)

其中,两个带2的次方的是当前行的枚举和上一行的枚举,\(n\)是行数,\(m\)是检测合法。

可能会爆,要剪一下枝。

发现每一行有很多状态其实都是不合法的,所以先\(dfs\)找到每一行对自己来说的合法状态。

code

#include <cstdio>
#include <cstring>
using namespace std;
const int N=13;
int dp[N][1<<N];
int g[N][N],n,m,cnt=0,t0[1<<N];
//第几行,第几个数字,状态,上一个数
void dfs(int line,int dep,int t,int last)
{
if(dep==m+1)
{
t0[++cnt]=t;
return;
}
if(g[line][dep]&&!last)
dfs(line,dep+1,t<<1|1,1);
dfs(line,dep+1,t<<1,0);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&g[i][j]);
dfs(1,1,0,0);
for(int i=1;i<=cnt;i++)
dp[1][t0[i]]=1;
for(int i=2;i<=n;i++)
{
cnt=0;
dfs(i,1,0,0);
for(int j=1;j<=cnt;j++)
for(int k=0;k<=(1<<m)-1;k++)
{
if(!dp[i-1][k]) continue;
int flag=1;
for(int q=0;q<n;q++)
if((t0[j]>>q)&(k>>q))
{
flag=0;
break;
}
if(flag)
{
dp[i][t0[j]]+=dp[i-1][k];
dp[i][t0[j]]%=100000000;
}
}
}
int ans=0;
for(int i=1;i<=cnt;i++)
{
ans+=dp[n][t0[i]];
ans%=100000000;
}
printf("%d\n",ans);
return 0;
}

2018.5.10

洛谷 P1879 [USACO06NOV]玉米田 解题报告的更多相关文章

  1. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  2. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  3. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  4. 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  5. 洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  6. [洛谷P1879][USACO06NOV]玉米田Corn Fields

    题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...

  7. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  8. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

  9. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

随机推荐

  1. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  2. [转][南京米联ZYNQ深入浅出]第二季更新完毕课程共计16节课

    [南京米联]ZYNQ第二季更新完毕课程共计16节课 [第二季ZYNQ]                                                                  ...

  3. asp.net core部署时自定义监听端口,提高部署的灵活性

    另一种方式 https://www.cnblogs.com/stulzq/p/9039836.html 代码截图: 贴一下代码,方便复制: //默认端口号5000 string port = &quo ...

  4. hdu 3038 给区间和,算出多少是错的

    参考博客 How Many Answers Are Wrong Problem Description TT and FF are ... friends. Uh... very very good ...

  5. 《移山之道》Reading Task

    老师布置的阅读任务虽然是附加的作业,但是对我来说是个很好的学习机会.软件工程主要是对工程的开发进行学习,毕竟在学校老师教了那么多的知识,我们课下做了那么多的练习并没有提高我们做一个工程的能力.一个项目 ...

  6. 个人博客作业Week7(阅读文章,心得体会)

    Alpha阶段结束了,内心可以说是五味杂陈.不是说我们的产品拿不上台面那般差劲,复杂的心绪主要来源于和别的队的比较,别的队才刚刚发布没多久访问量和注册量就破百了,并且还发起了找bug送红包的活动.可能 ...

  7. 语音笔记:MFCC

    一,传统语音识别体系结构 二,MFCC特征提取 MFCC(Mel-frequency cepstral coefficients):梅尔频率倒谱系数.梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率 ...

  8. opencv学习笔记(五)

    线性滤波 方框滤波--boxblur函数 均值滤波(邻域平均滤波)--blur函数 高斯滤波--GaussianBlur函数 中值滤波--medianBlur函数 双边滤波--bilateralFil ...

  9. Red Hat 5.8 CentOS 6.5 共用 输入法

    pick up from http://jingyan.baidu.com/article/20b68a885a3607796cec622c.html

  10. Jmeter 通过json Extracted 来获取 指定的值的id

    在没有 精确或模糊查询的接口时可以使用jmeter 获取指定的值的ID import java.lang.String ; String getTargetName="iphone632g& ...