【ARC102E】Stop. Otherwise...(容斥原理,动态规划)
【ARC102E】Stop. Otherwise...(容斥原理,动态规划)
题面
AtCoder
有\(n\)个骰子,每个骰子有\(K\)个面,上面有\(1\)到\(K\)。骰子都是一样的。
现在对于\([2,2k]\)中的每一个数\(x\),要求出满足不存在任意两个骰子的点数和为\(x\)的方案数。
题解
显然这个东西是一个容斥计算的过程。
而两两之间的点数和恰好为\(x\)的配对方案数也是有限的。
那么枚举至少出现了\(k\)不合法的数字配对的情况。
得到了:
\]
其中\(t\)表示能够拼出\(x\)的无序点对数。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 998244353
#define MAX 4040
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int jc[MAX],jv[MAX],inv[MAX],n,k,tot[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
scanf("%d%d",&k,&n);
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=n+k;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n+k;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n+k;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=k;++i)tot[i+1]+=1,tot[i+k+1]-=1;
for(int i=1;i<=k+k;++i)tot[i]+=tot[i-1];
for(int i=2;i<=k+k;++i)
{
int cnt=(tot[i]+1)/2,ans=0;
for(int j=0,d=1;j<=cnt&&j+j<=n;++j,d=MOD-d)
add(ans,1ll*d*C(cnt,j)%MOD*C(n-2*j+k-1,k-1)%MOD);
printf("%d\n",ans);
}
return 0;
}
然后听\(ppl\)说还有一种\(dp\)方法。
因为每一对无序对中,都只能选择恰好一个,所以设\(f[i][j]\)表示从\(i\)个无序对中恰好选择了\(j\)个的方案数,每个组里面至少要选择一个。
那么转移就是\(f[i][j]=2*f[i-1][j-1]+f[i][j-1]\)。
转移的两部分是这样子看的,前半部分是选择一个新组,可以从两个中任选一个,否则强制选择上一组,并且只能选择之前选过的那一个。
那么得到每个组可以不选东西的方案数\(\displaystyle g[i][j]=\sum_{k=0}^i {i\choose k}f[k][j]\)。即考虑选择了几个组,然后计算一下方案数。
这样子一来询问的时候只需要询问的考虑就行了。
当\(x\)为奇数的时候,那么直接枚举多少个可能构成组,然后剩下的在范围外,随意组合。
当\(x\)为偶数的时候,特殊考虑是否选择\(x/2\),选了就只能选一个,然后组合数考虑。
求\(g\)的时候用\(NTT\)优化,时间复杂度\(O(n^2log)\)
没有代码,要代码的话,戳ppl博客。
【ARC102E】Stop. Otherwise...(容斥原理,动态规划)的更多相关文章
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- UOJ#185. 【ZJOI2016】小星星 容斥原理 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ185.html 题解 首先暴力DP是 $O(3^nn^3)$ 的,大家都会. 我们换个方向考虑. 假设我们 ...
- 51Nod1317 相似字符串对 容斥原理 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1317.html 题目传送门 - 51Nod1317 题意 称一对字符串(A,B)是相似的,当且仅当满 ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
- bzoj1042: [HAOI2008]硬币购物
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...
- 【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)
[arc093f]Dark Horse(容斥原理,动态规划,状态压缩) 题面 atcoder 有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) .现在这 \(2^n\) 名选手将进行 ...
- 【BZOJ1042】硬币购物(动态规划,容斥原理)
[BZOJ1042]硬币购物(动态规划,容斥原理) 题面 BZOJ Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬 ...
- 【BZOJ1471】不相交路径 题解(拓扑排序+动态规划+容斥原理)
题目描述 在有向无环图上给你两个起点和终点分别为$a,b,c,d$.问有几种路径方案使得能从$a$走到$b$的同时能从$c$走到$d$,且两个路径没有交点. $1\leq n\leq 200,1\le ...
随机推荐
- React 开发注意事项
引用自定义组件的时候,组件名称首字母大写 import CustomComponent from "./customComponent "; render(){ return ( ...
- [Oracle]Oracle 各产品的 生命周期
http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf
- 校内模拟赛 虫洞(by NiroBC)
题意: n个点m条边的有向图,每一天每条边存在的概率都是p,在最优策略下,询问从1到n的期望天数. 分析: dijkstra. 每次一定会优先选dp最小的后继走,如果这条边不存在,选次小的,以此类推. ...
- 蓝牙 link timeout分析
蓝牙主机和蓝牙设备建立连接之后,会在l2cap 层面上建立相应的channel,这些channel 基本上是用于各种不同的profile 或者protocol 进行通信用的. 当相应的profile或 ...
- asp.net core使用jexus部署在linux无法正确 获取远程ip的解决办法
asp.net core程序部署在centos7(下面的解决方案,其他系统都能使用,这里只是我自己部署在centos7),使用服务器jexus进行部署,AppHost模式. 因为请求是由jexus进行 ...
- monkey测试基础
一.环境配置 Java JDK和android SDK 二.基本命令 *安卓手机链接电脑,打开手机的开发者模式,允许usb调试 adb:检查adb是否安装成功 adb devices:查看连接的设备 ...
- tomcat内存溢出问题记录
问题说明:公司内网环境中部署的jenkins代码发版平台突然不能访问了,查看tomcat的catalina.out日志发现报错如下: [root@redmine logs]# tail -f /srv ...
- linux-shell-变量参数
sxt1 的生命周期随着调起而生效,结束就消失 子进程和父进程的关系,
- ACM找bug方案
测试数据和一些常见的数据都通过了然而还是wrong,可以试试下面的一些解决方案: 1.数据爆掉 ① 可以改变数据类型,以容纳 ② 修改当前算法,比如a*a/b可以改写成a/b*a 2 特殊情况,例 ...
- pair work结对编程(张艺 杨伊)
一.结对编程人员: 张艺(学号后三位:185) 杨伊(学号后三位:151) 二.这是我们工作的样子:(图片) 三.结对编程优缺点: 优点: 1.结对编程时间紧密,在一定程度上可以督促双方学习,提高 ...