Probability和Likelihood的区别
Bayes for Beginners: Probability and Likelihood 好好看,非常有用。
以前死活都不理解Probability和Likelihood的区别,为什么这两个东西的条件反一下就相等。
定义:
Probability是指在固定参数的情况下,事件的概率,必须是0-1,事件互斥且和为1. 我们常见的泊松分布、二项分布、正态分布的概率密度图描述的就是这个。
Likelihood是指固定的结果,我们的参数的概率,和不必为1,不必互斥,所以只有ratio是有意义的。
至于为什么L=P,这是因为定义就是这样的,wiki解释得非常清楚。
Consider a simple statistical model of a coin flip, with a single parameter that expresses the "fairness" of the coin. This parameter is the probability that a given coin lands heads up ("H") when tossed.
can take on any numeric value within the range 0.0 to 1.0. For a perfectly fair coin,
= 0.5.
Imagine flipping a coin twice, and observing the following data : two heads in two tosses ("HH"). Assuming that each successive coin flip is IID, then the probability of observing HH is
Hence: given the observed data HH, the likelihood that the model parameter equals 0.5, is 0.25. Mathematically, this is written as
This is not the same as saying that the probability that , given the observation HH, is 0.25. (For that, we could apply Bayes' theorem, which implies that the posterior probability is proportional to the likelihood times the prior probability.)
Suppose that the coin is not a fair coin, but instead it has . Then the probability of getting two heads is
Hence
More generally, for each value of , we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1.
In Figure 1, the integral of the likelihood over the interval [0, 1] is 1/3. That illustrates an important aspect of likelihoods: likelihoods do not have to integrate (or sum) to 1, unlike probabilities.
Probability和Likelihood的区别的更多相关文章
- [Bayes] Understanding Bayes: A Look at the Likelihood
From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note ...
- BDA3 Chapter 1 Probability and inference
1. uncertainty aleatoric uncertainty 偶然不确定性 epistemic uncertainty 认知不确定性 2. probability VS likelihoo ...
- Bayesian Statistics for Genetics | 贝叶斯与遗传学
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayes ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...
- 机器学习-Probabilistic interpretation
Probabilistic interpretation,概率解释 解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的, ...
- Normalizing flows
probability VS likelihood: https://zhuanlan.zhihu.com/p/25768606 http://sdsy888.me/%E9%9A%8F%E7%AC%9 ...
- graph generation model
Generative Graph Models 第八章传统的图生成方法> The previous parts of this book introduced a wide variety of ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
随机推荐
- from appium import webdriver 使用python爬虫,批量爬取抖音app视频(requests+Fiddler+appium)
使用python爬虫,批量爬取抖音app视频(requests+Fiddler+appium) - 北平吴彦祖 - 博客园 https://www.cnblogs.com/stevenshushu/p ...
- Linux之cat的使用
基本介绍 工作原理 从标准输入读入要 cat 的文件列表,然后逐个打开,读入文件内容,再将内容输出到标准输出上. 使用场景 一次显示整个文件 从键盘创建一个文件 将几个文件合并为一个文件 将一个或多个 ...
- kafka7 探索生产者同步or异步发送消息
1.生产者:在发送完消息后,收到回执确认. 主要是在SimpleProducer.java中修改了发送消息的2行代码,用到了回调函数,修改如下: //发送消息 ProducerRecord<St ...
- Storm UI说明
一.Storm ui 首页主要分为4块: Cluster Summary,Topology summary,Supervisor summary,Nimbus Configuration Cluste ...
- java框架之SpringBoot(9)-数据访问及整合MyBatis
简介 对于数据访问层,无论是 SQL 还是 NOSQL,SpringBoot 默认采用整合 SpringData 的方式进行统一处理,添加了大量的自动配置,引入了各种 Template.Reposit ...
- 【JVM】-NO.115.JVM.1 -【JDK11 HashMap详解-4-伸展树、B树】
.Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- 小学生都能看懂的FFT!!!
小学生都能看懂的FFT!!! 前言 在创新实践重心偷偷看了一天FFT资料后,我终于看懂了一点.为了给大家提供一份简单易懂的学习资料,同时也方便自己以后复习,我决定动手写这份学习笔记. 食用指南: 本篇 ...
- js阻止表单默认提交、刷新页面
一.阻止刷新页面 在表单中的提交按钮<button></button>标签改为<input type="button">或者在<butto ...
- Gitlab安装以及汉化
Gitlab安装以及汉化 系统环境: CentOS 7.5 IP:192.168.1.2 关闭selinux.firewalld gitlab-ce-10.8.4 rpm包:下载地址 一.下载并安装g ...
- https://scrapingclub.com/exercise/detail_sign/
def parse(self, response): # pattern1 = re.compile('token=(.*?);') # token = pattern1.findall(respon ...