Bayes for Beginners: Probability and Likelihood 好好看,非常有用。

以前死活都不理解Probability和Likelihood的区别,为什么这两个东西的条件反一下就相等。

定义:

Probability是指在固定参数的情况下,事件的概率,必须是0-1,事件互斥且和为1. 我们常见的泊松分布、二项分布、正态分布的概率密度图描述的就是这个。

Likelihood是指固定的结果,我们的参数的概率,和不必为1,不必互斥,所以只有ratio是有意义的。

至于为什么L=P,这是因为定义就是这样的,wiki解释得非常清楚。

Likelihood function

Consider a simple statistical model of a coin flip, with a single parameter  that expresses the "fairness" of the coin. This parameter is the probability that a given coin lands heads up ("H") when tossed.  can take on any numeric value within the range 0.0 to 1.0. For a perfectly fair coin,  = 0.5.

Imagine flipping a coin twice, and observing the following data : two heads in two tosses ("HH"). Assuming that each successive coin flip is IID, then the probability of observing HH is

Hence: given the observed data HH, the likelihood that the model parameter  equals 0.5, is 0.25. Mathematically, this is written as

This is not the same as saying that the probability that , given the observation HH, is 0.25. (For that, we could apply Bayes' theorem, which implies that the posterior probability is proportional to the likelihood times the prior probability.)

Suppose that the coin is not a fair coin, but instead it has . Then the probability of getting two heads is

Hence

More generally, for each value of , we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1.

In Figure 1, the integral of the likelihood over the interval [0, 1] is 1/3. That illustrates an important aspect of likelihoods: likelihoods do not have to integrate (or sum) to 1, unlike probabilities.

Probability和Likelihood的区别的更多相关文章

  1. [Bayes] Understanding Bayes: A Look at the Likelihood

    From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note ...

  2. BDA3 Chapter 1 Probability and inference

    1. uncertainty aleatoric uncertainty 偶然不确定性 epistemic uncertainty 认知不确定性 2. probability VS likelihoo ...

  3. Bayesian Statistics for Genetics | 贝叶斯与遗传学

    Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayes ...

  4. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  5. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  6. 机器学习-Probabilistic interpretation

    Probabilistic interpretation,概率解释  解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的, ...

  7. Normalizing flows

    probability VS likelihood: https://zhuanlan.zhihu.com/p/25768606 http://sdsy888.me/%E9%9A%8F%E7%AC%9 ...

  8. graph generation model

    Generative Graph Models 第八章传统的图生成方法> The previous parts of this book introduced a wide variety of ...

  9. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

随机推荐

  1. spark-sql(spark sql cli)客户端集成hive

    1.安装hadoop集群 参考:http://www.cnblogs.com/wcwen1990/p/6739151.html 2.安装hive 参考:http://www.cnblogs.com/w ...

  2. 可视化&地图__公司收集

    原文地址:https://github.com/zhongcaiwei/Data-visualization-technology-sharing 一.数据可视化企业(部分) 数字冰雹 光启元-腾讯 ...

  3. Docker入门4------Dockerfile

    转自:https://www.cnblogs.com/jsonhc/p/7766841.html https://www.cnblogs.com/jsonhc/p/7767669.html Docke ...

  4. typescript 如何引入jquery

    webpack配置,不需要配置externals,webpack具体配置如下, const webpack = require('webpack'); const path = require('pa ...

  5. 4、jeecg 笔记之 自定义显示按钮 (exp 属性)

    1.需求 先看一下需求吧,我们希望 datagrid 操作栏中的按钮,可以根据条件进行动态显示. 2.实现 其实 jeecg 提供了一个属性 - exp ,通过该属性即可实现. <t:dgFun ...

  6. DjangoMTV模型之model层——ORM操作数据库(基本增删改查)

    Django的数据库相关操作 对象关系映射(英语:(Object Relational Mapping,简称ORM),是一种程序技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换.从效果上说 ...

  7. 【JVM】-NO.111.JVM.1 -【JDK11 HashMap详解-1-hash()剖析】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  8. 2018-2019-2 20175211 实验一《Java开发环境的熟悉》实验报告

    目录 代码托管 一.命令行下Java程序开发 二.IDEA下Java程序开发.调试 (1)建立与Git的链接 (2)开发.调试程序 (3)上传代码至码云 三.练习 四.问题及解决 五.学习总结 代码托 ...

  9. python扩展包的升级

    检查更新:pip list --outdated 更新: pip install --upgrade xxxx

  10. dotnet core命令

    dotnet run -----运行程序 dotnet publish -r centos-x64  -----发布程序 mkdri 文件名--->cd 文件名--->dotnet new ...