题目描述

阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。

经阿狸研究发现,这个打字机是这样工作的:

l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。

l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。

l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。

例如,阿狸输入aPaPBbP,纸上被打印的字符如下:

a
aa
ab

我们把纸上打印出来的字符串从1开始顺序编号,一直到n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。

阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?

输入

输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。

第二行包含一个整数m,表示询问个数。

接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。

输出

输出m行,其中第i行包含一个整数,表示第i个询问的答案。

样例输入

aPaPBbP
3
1 2
1 3
2 3

样例输出

2
1
0

提示

1<=N<=10^5

1<=M<=10^5

输入总长<=10^5
 
这是一道非常好的AC自动机的题(蒟蒻的我调了一下午QAQ),做完这道题相信你能对AC自动机有更深入的理解。
首先讲解几个前置知识点:
1、fail树:trie树上每个节点都有且只有一个失配标记,因此把每个节点和它的失配标记连上就形成了一棵树(这个不用解释了吧,只有一个失配标记相当于只有一个父亲qwq),我们一般称这棵树为fail树。
2、dfs序:这个大家应该都知道,但为了防止有人不知道还是说一下。dfs序就是dfs搜索到的点的顺序,在dfs序上一个点的子树上的所有点都是连着的且都在这个点的后面,也就是每个点的子树在dfs序上都是一段区间。
每次操作是询问X串在Y串中出现几次,也就是询问Y串上有几个节点的失配标记直接或间接指向X串的终止节点。
有了fail树也就把问题转化成了Y串上有多少个节点在以X串终止节点为根的子树上。
这道题做法比较麻烦,因此分步来讲解。
1、首先是读入的一个字符串,起初我打算模拟栈操作在每次P(打印)时把当前的栈所对应的串插入trie树,但这样每次在trie树上插入字符串都要从根节点重新走,显然时间复杂度是不行的。所以要直接把读入字符串插入到trie树上,当遇到B就回退一个节点,遇到P就给当前节点打一个终止标记,这样O(串长)就能建出trie树。
2、找每个节点失配标记并建立fail树。
3、做fail树的dfs序并维护每个节点子树区间的左右端点。
4、读入每个查询并挂链(查询比较多)。
5、对AC自动机dfs,每到一个节点把这个节点的权值+1,回溯到这个节点把这个点权值-1,(这样就保证只有当前dfs到的链上的点是有值的),当搜索到一个终止节点时,对它所有挂链进行进行查询,对于它的一个查询的X串,只要在dfs序上把这个X串终止节点的子树区间用树状数组(线段树也行)求和就行了。但要注意的是,不能真的做回溯dfs,因为这样会死循环,所以直接按节点编号来循环即可。
最后附上代码(数组含义在代码里写明)。
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
queue<int>q;
int m;
int x,y;
int cnt;
int tot;
int num;
int len;
int cont;
int l[100010];//dfs序上每个数的子树对应区间的左端点
int r[100010];//dfs序上每个数的子树对应区间的右端点
int t[100010];//树状数组
int f[100010];//每个串的终止节点
char s[100010];//读入字符串
int to[100010];
int fa[100010];//trie树上每个点的父亲
int ans[100010];//答案
int val[100010];
int fail[100010];//失配指针
int next[100010];
int head[100010];
int a[100010][26];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
}
int ask(int x)
{
int res=0;
for(int i=x;i;i-=i&-i)
{
res+=t[i];
}
return res;
}
void change(int x,int v)
{
for(int i=x;i<=num;i+=i&-i)
{
t[i]+=v;
}
}
void build(char *s)//建立trie树
{
int now=0;
for(int i=0;i<len;i++)
{
if(s[i]=='B')
{
now=fa[now];
}
else if(s[i]=='P')
{
f[++cont]=now;
}
else
{
a[now][s[i]-'a']=++cnt;
fa[cnt]=now;
now=a[now][s[i]-'a'];
}
}
}
void getfail()//找每个点失配标记
{
q.push(0);
while(!q.empty())
{
int now=q.front();
q.pop();
if(now!=0)
{
add(fail[now],now,0);
}
for(int i=0;i<26;i++)
{
if(a[now][i]!=0)
{
q.push(a[now][i]);
if(now!=0)
{
fail[a[now][i]]=a[fail[now]][i];
}
else
{
fail[a[now][i]]=0;
}
}
else
{
a[now][i]=a[fail[now]][i];
}
}
}
}
void dfs(int x)//找fail树的dfs序
{
l[x]=++num;
for(int i=head[x];i;i=next[i])
{
dfs(to[i]);
}
r[x]=num;
}
int main()
{
scanf("%s",&s);
len=strlen(s);
build(s);
getfail();
dfs(0);
scanf("%d",&m);
tot=0;
memset(head,0,sizeof(head));
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(y,x,i);
}
int now=0;
cont=0;
for(int i=0;i<len;i++)
{
if(s[i]-'a'==-31)
{
change(l[now],-1);
now=fa[now];
}
else if(s[i]-'a'==-17)
{
for(int j=head[++cont];j;j=next[j])
{
ans[val[j]]=ask(r[f[to[j]]])-ask(l[f[to[j]]]-1);
}
}
else
{
now=a[now][s[i]-'a'];
change(l[now],1);
}
}
for(int i=1;i<=m;i++)
{
printf("%d\n",ans[i]);
}
}

BZOJ2434[Noi2011]阿狸的打字机——AC自动机+dfs序+树状数组的更多相关文章

  1. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  2. 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组

    [BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...

  3. NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)

    题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...

  4. BZOJ 2434 阿狸的打字机(ac自动机+dfs序+树状数组)

    题意 给你一些串,还有一些询问 问你第x个串在第y个串中出现了多少次 思路 对这些串建ac自动机 根据fail树的性质:若x节点是trie中root到t任意一个节点的fail树的祖先,那么x一定是y的 ...

  5. BZOJ2434: [NOI2011]阿狸的打字机(AC自动机+dfs序+树状数组)

    [NOI2011]阿狸的打字机 题目链接:https://www.luogu.org/problemnew/show/P2414 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. ...

  6. BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...

  7. CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)

    The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...

  8. BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组

    BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组 Description Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是 ...

  9. BZOJ2434: [Noi2011]阿狸的打字机(AC自动机 树状数组)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4140  Solved: 2276[Submit][Status][Discuss] Descript ...

随机推荐

  1. 【Codeforces Round 1132】Educational Round 61

    Codeforces Round 1132 这场比赛做了\(A\).\(B\).\(C\).\(F\)四题,排名\(89\). \(A\)题\(wa\)了一次,少考虑了一种情况 \(D\)题最后做出来 ...

  2. http协议进阶(四)报文首部

    之前写的关于报文首部的传送门: 报文首部:http://www.cnblogs.com/imyalost/p/5708445.html 通用首部字段:http://www.cnblogs.com/im ...

  3. bat基础知识

    1.打日志:使用重定向 eg:call test.bat>log/test.log 2.不关闭cmd窗口:使用pause eg: 结果: ps:注意,在自动化运维的时候,比如创建自动发版的脚本的 ...

  4. Flutter - BottomNavigationBar底部导航栏切换后,状态丢失

    如果你用过BottomNavigationBar.TabBar.还有Drawer,你就会发现,在切换页面之后,原来的页面状态就会丢失. 要是上一页有一个数据列表,很多数据,你滚动到了下头,切换页面后, ...

  5. .Net core使用EF Core Migration做数据库升级

    ---恢复内容开始--- (1)VS Code下创建含有授权功能的并且使用localdb作为数据库的命令 dotnet new -au individual -uld --name identityS ...

  6. spring-session-data-redis包冲突

    包冲突 spring 的包很容易冲突, 因为写软件的人在兼容性上处理的不够,一般不检测重复加载. spring-session-data-redis 引用后, 一定要把 spring-session ...

  7. Redis常用操作-------Set(集合)

    1.SADD key member [member ...] 将一个或多个 member 元素加入到集合 key 当中,已经存在于集合的 member 元素将被忽略. 假如 key 不存在,则创建一个 ...

  8. python-编码-15

    ascii A : 00000010 8位 一个字节 unicode A : 00000000 00000001 00000010 00000100 32位 四个字节 中:00000000 00000 ...

  9. 网站响应式布局/网站自适应问题+rem、em、px、pt及网站字体大小设配

    Bootstrap 网格系统: Bootstrap CSS: Bootstrap 组件及插件: 一.什么是响应式布局?       响应式布局是Ethan Marcotte在2010年5月份提出的一个 ...

  10. Java实验报告一:Java开发环境的熟悉

    实验要求: 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 实验内容 (一)   命令行下Java程序开发 (二)Eclipse下Java程序 ...