BZOJ2653middle——二分答案+可持久化线段树
题目描述
输入
输出
Q行依次给出询问的答案。
样例输入
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
样例输出
271451044
969056313
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
int n,m;
int sum[5000010];
int lmx[5000010];
int rmx[5000010];
int ls[5000010];
int rs[5000010];
int root[50010];
int a,b,c,d;
int cnt;
int ans;
int p[5];
struct node
{
int num;
int id;
}s[20010];
bool cmp(node a,node b)
{
return a.num<b.num;
}
void pushup(int rt)
{
sum[rt]=sum[ls[rt]]+sum[rs[rt]];
lmx[rt]=max(lmx[ls[rt]],sum[ls[rt]]+lmx[rs[rt]]);
rmx[rt]=max(rmx[rs[rt]],sum[rs[rt]]+rmx[ls[rt]]);
}
int build(int l,int r)
{
int rt=++cnt;
if(l==r)
{
sum[rt]=1;
lmx[rt]=1;
rmx[rt]=1;
return rt;
}
int mid=(l+r)>>1;
ls[rt]=build(l,mid);
rs[rt]=build(mid+1,r);
pushup(rt);
return rt;
}
int updata(int pre,int l,int r,int k)
{
int rt=++cnt;
if(l==r)
{
sum[rt]=-1;
lmx[rt]=0;
rmx[rt]=0;
return rt;
}
ls[rt]=ls[pre];
rs[rt]=rs[pre];
int mid=(l+r)>>1;
if(k<=mid)
{
ls[rt]=updata(ls[pre],l,mid,k);
}
else
{
rs[rt]=updata(rs[pre],mid+1,r,k);
}
pushup(rt);
return rt;
}
int query(int rt,int l,int r,int L,int R)
{
if(L>R)
{
return 0;
}
if(L<=l&&r<=R)
{
return sum[rt];
}
int mid=(l+r)>>1;
if(L>mid)
{
return query(rs[rt],mid+1,r,L,R);
}
else if(R<=mid)
{
return query(ls[rt],l,mid,L,R);
}
return query(ls[rt],l,mid,L,R)+query(rs[rt],mid+1,r,L,R);
}
int findl(int rt,int l,int r,int L,int R)
{
if(L>R)
{
return 0;
}
if(L<=l&&r<=R)
{
return rmx[rt];
}
int mid=(l+r)>>1;
int res=0;
if(R>mid)
{
res=findl(rs[rt],mid+1,r,L,R);
}
if(L<=mid)
{
res=max(res,findl(ls[rt],l,mid,L,R)+query(rs[rt],mid+1,r,mid+1,R));
}
return res;
}
int findr(int rt,int l,int r,int L,int R)
{
if(L>R)
{
return 0;
}
if(L<=l&&r<=R)
{
return lmx[rt];
}
int mid=(l+r)>>1;
int res=0;
if(L<=mid)
{
res=findr(ls[rt],l,mid,L,R);
}
if(R>mid)
{
res=max(res,findr(rs[rt],mid+1,r,L,R)+query(ls[rt],l,mid,L,mid));
}
return res;
}
bool check(int x,int a,int b,int c,int d)
{
int res=0;
res+=query(root[x],1,n,b,c);
res+=findl(root[x],1,n,a,b-1);
res+=findr(root[x],1,n,c+1,d);
if(res>=0)
{
return true;
}
return false;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i].num);
s[i].id=i;
}
root[1]=build(1,n);
sort(s+1,s+1+n,cmp);
for(int i=2;i<=n;i++)
{
root[i]=root[i-1];
root[i]=updata(root[i],1,n,s[i-1].id);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
p[1]=(a+ans)%n;
p[2]=(b+ans)%n;
p[3]=(c+ans)%n;
p[4]=(d+ans)%n;
sort(p+1,p+5);
a=p[1]+1;
b=p[2]+1;
c=p[3]+1;
d=p[4]+1;
int l=1;
int r=n;
ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid,a,b,c,d))
{
l=mid+1;
ans=mid;
}
else
{
r=mid-1;
}
}
ans=s[ans].num;
printf("%d\n",ans);
}
}
BZOJ2653middle——二分答案+可持久化线段树的更多相关文章
- bzoj 2653 二分答案+可持久化线段树
首先离散化,然后我们知道如果对于一个询问的区间[l1,r1],[l2,r2],我们二分到一个答案x,将[l1,r2]区间中的元素大于等于x的设为1,其余的设为-1,那么如果[l1,r1]的最大右区间和 ...
- BZOJ 2653 middle 二分答案+可持久化线段树
题目大意:有一个序列,包含多次询问.询问区间左右端点在规定区间里移动所得到的最大中位数的值. 考虑对于每个询问,如何得到最优区间?枚举显然是超时的,只能考虑二分. 中位数的定义是在一个序列中,比中位数 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- 【BZOJ2653】middle 二分+可持久化线段树
[BZOJ2653]middle Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个 ...
- BZOJ 4556(后缀数组+主席树求前驱后继+二分||后缀数组+二分+可持久化线段树)
换markdown写了.. 题意: 给你一个1e5的字符串,1e5组询问,求\([l_1,r_1]\)的所有子串与\([l_2,r_2]\)的lcp 思路: 首先可以发现答案是具有单调性的,我们考虑二 ...
- 【BZOJ-2653】middle 可持久化线段树 + 二分
2653: middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1298 Solved: 734[Submit][Status][Discu ...
- BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)
BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...
- 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
随机推荐
- <转>大型分布式网站术语浅析
夜半睡起看书,看到一篇关于分布式网站性能优化术语的文章,个人觉得不错,分享出来... 原文地址:大型分布式网站术语分析 一.I/O优化 1.增加缓存,减少磁盘的访问次数. 2.优化磁盘的管理系统,设计 ...
- Linux下NTP服务器配置
简介 原理 配置ntp服务器 进行同步 一.简介 在计算时间的时候,最准确的计算应该是使用『原子震荡周期』所计算的物理时钟了( Atomic Clock, 也被称为原子钟 ),这也被定义为标准时间(I ...
- date日期 格式化
这个是别人写的,我拿过来用的,哈哈 Date.prototype.format = function(fmt) { var o = { "M+" : this.getMonth() ...
- kubernetes session回话保持
1.Nginx 版本 root@ingress-nginx-controller-4b75b:/# /usr/sbin/nginx -vnginx version: nginx/1.13.9 2.in ...
- linux调度器源码分析 - 运行(四)
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 之前的文章已经将调度器的数据结构.初始化.加入进程都进行了分析,这篇文章将主要说明调度器是如何在程序稳定运 ...
- linux svn代码回滚命令
取消对代码的修改分为两种情况: 第一种情况:改动没有被提交(commit). 这种情况下,使用svn revert就能取消之前的修改. svn revert用法如下: # svn revert [-R ...
- 案例学python——案例三:豆瓣电影信息入库
闲扯皮 昨晚给高中的妹妹微信讲题,函数题,小姑娘都十二点了还迷迷糊糊.今天凌晨三点多,被连续的警报声给惊醒了,以为上海拉了防空警报,难不成地震,空袭?难道是楼下那个车主车子被堵了,长按喇叭?开窗看看, ...
- Linux下monit进程管理操作梳理
Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...
- haproxy反向代理环境部署(http和https代理)
操作背景:前方有一台haproxy代理机器(115.100.120.57/192.168.1.7),后方两台realserver机器(192.168.1.150.192.168.1.151,没有公网i ...
- centos7.2部署vnc服务记录
不做过多介绍了,下面直接记录下centos7系统下安装配置vncserver的操作记录 0)更改为启动桌面或命令行模式 获取当前系统启动模式 [root@localhost ~]# systemctl ...