[Spark][Python]DataFrame中取出有限个记录的例子:

sqlContext = HiveContext(sc)

peopleDF = sqlContext.read.json("people.json")

peopleDF.limit(3).show()

===

[training@localhost ~]$ hdfs dfs -cat people.json
{"name":"Alice","pcode":"94304"}
{"name":"Brayden","age":30,"pcode":"94304"}
{"name":"Carla","age":19,"pcoe":"10036"}
{"name":"Diana","age":46}
{"name":"Etienne","pcode":"94104"}
[training@localhost ~]$

In [1]: sqlContext = HiveContext(sc)

In [2]: peopleDF = sqlContext.read.json("people.json")
17/10/05 05:03:11 INFO hive.HiveContext: Initializing execution hive, version 1.1.0
17/10/05 05:03:11 INFO client.ClientWrapper: Inspected Hadoop version: 2.6.0-cdh5.7.0
17/10/05 05:03:11 INFO client.ClientWrapper: Loaded org.apache.hadoop.hive.shims.Hadoop23Shims for Hadoop version 2.6.0-cdh5.7.0
17/10/05 05:03:14 INFO hive.metastore: Trying to connect to metastore with URI thrift://localhost.localdomain:9083
17/10/05 05:03:14 INFO hive.metastore: Opened a connection to metastore, current connections: 1
17/10/05 05:03:15 INFO hive.metastore: Connected to metastore.
17/10/05 05:03:16 INFO session.SessionState: Created HDFS directory: file:/tmp/spark-99a33db4-b69a-46a9-8032-f87d63299040/scratch/training
17/10/05 05:03:16 INFO session.SessionState: Created local directory: /tmp/4e1c5259-7ae8-482c-ae77-94d3a0c51f91_resources
17/10/05 05:03:16 INFO session.SessionState: Created HDFS directory: file:/tmp/spark-99a33db4-b69a-46a9-8032-f87d63299040/scratch/training/4e1c5259-7ae8-482c-ae77-94d3a0c51f91
17/10/05 05:03:16 INFO session.SessionState: Created local directory: /tmp/training/4e1c5259-7ae8-482c-ae77-94d3a0c51f91
17/10/05 05:03:16 INFO session.SessionState: Created HDFS directory: file:/tmp/spark-99a33db4-b69a-46a9-8032-f87d63299040/scratch/training/4e1c5259-7ae8-482c-ae77-94d3a0c51f91/_tmp_space.db
17/10/05 05:03:16 INFO session.SessionState: No Tez session required at this point. hive.execution.engine=mr.
17/10/05 05:03:16 INFO json.JSONRelation: Listing hdfs://localhost:8020/user/training/people.json on driver
17/10/05 05:03:19 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 251.1 KB, free 251.1 KB)
17/10/05 05:03:20 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 21.6 KB, free 272.7 KB)
17/10/05 05:03:20 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:55073 (size: 21.6 KB, free: 208.8 MB)
17/10/05 05:03:20 INFO spark.SparkContext: Created broadcast 0 from json at NativeMethodAccessorImpl.java:-2
17/10/05 05:03:20 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/05 05:03:21 INFO spark.SparkContext: Starting job: json at NativeMethodAccessorImpl.java:-2
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Got job 0 (json at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (json at NativeMethodAccessorImpl.java:-2)
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Missing parents: List()
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[3] at json at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/05 05:03:21 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.3 KB, free 277.1 KB)
17/10/05 05:03:21 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.4 KB, free 279.5 KB)
17/10/05 05:03:21 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:55073 (size: 2.4 KB, free: 208.8 MB)
17/10/05 05:03:21 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006
17/10/05 05:03:21 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (MapPartitionsRDD[3] at json at NativeMethodAccessorImpl.java:-2)
17/10/05 05:03:21 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
17/10/05 05:03:21 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 2149 bytes)
17/10/05 05:03:21 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0)
17/10/05 05:03:21 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/people.json:0+179
17/10/05 05:03:21 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
17/10/05 05:03:21 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
17/10/05 05:03:21 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
17/10/05 05:03:21 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
17/10/05 05:03:21 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
17/10/05 05:03:22 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 2354 bytes result sent to driver
17/10/05 05:03:22 INFO scheduler.DAGScheduler: ResultStage 0 (json at NativeMethodAccessorImpl.java:-2) finished in 0.931 s
17/10/05 05:03:22 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 850 ms on localhost (1/1)
17/10/05 05:03:22 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
17/10/05 05:03:22 INFO scheduler.DAGScheduler: Job 0 finished: json at NativeMethodAccessorImpl.java:-2, took 1.388410 s
17/10/05 05:03:23 INFO hive.HiveContext: default warehouse location is /user/hive/warehouse
17/10/05 05:03:23 INFO hive.HiveContext: Initializing metastore client version 1.1.0 using Spark classes.
17/10/05 05:03:23 INFO client.ClientWrapper: Inspected Hadoop version: 2.6.0-cdh5.7.0
17/10/05 05:03:23 INFO client.ClientWrapper: Loaded org.apache.hadoop.hive.shims.Hadoop23Shims for Hadoop version 2.6.0-cdh5.7.0
17/10/05 05:03:23 INFO spark.ContextCleaner: Cleaned accumulator 2
17/10/05 05:03:23 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on localhost:55073 in memory (size: 2.4 KB, free: 208.8 MB)
17/10/05 05:03:25 INFO hive.metastore: Trying to connect to metastore with URI thrift://localhost.localdomain:9083
17/10/05 05:03:25 INFO hive.metastore: Opened a connection to metastore, current connections: 1
17/10/05 05:03:25 INFO hive.metastore: Connected to metastore.
17/10/05 05:03:25 INFO session.SessionState: Created local directory: /tmp/684b38e5-72f0-4712-81d4-4c439e093f5c_resources
17/10/05 05:03:25 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/684b38e5-72f0-4712-81d4-4c439e093f5c
17/10/05 05:03:25 INFO session.SessionState: Created local directory: /tmp/training/684b38e5-72f0-4712-81d4-4c439e093f5c
17/10/05 05:03:25 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/684b38e5-72f0-4712-81d4-4c439e093f5c/_tmp_space.db
17/10/05 05:03:25 INFO session.SessionState: No Tez session required at this point. hive.execution.engine=mr.

In [3]: peopleDF.limit(3).show()
17/10/05 05:04:09 INFO storage.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 65.5 KB, free 338.2 KB)
17/10/05 05:04:10 INFO storage.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 21.4 KB, free 359.6 KB)
17/10/05 05:04:10 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on localhost:55073 (size: 21.4 KB, free: 208.8 MB)
17/10/05 05:04:10 INFO spark.SparkContext: Created broadcast 2 from showString at NativeMethodAccessorImpl.java:-2
17/10/05 05:04:10 INFO storage.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 251.1 KB, free 610.7 KB)
17/10/05 05:04:11 INFO storage.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 21.6 KB, free 632.4 KB)
17/10/05 05:04:11 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on localhost:55073 (size: 21.6 KB, free: 208.7 MB)
17/10/05 05:04:11 INFO spark.SparkContext: Created broadcast 3 from showString at NativeMethodAccessorImpl.java:-2
17/10/05 05:04:12 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/05 05:04:12 INFO spark.SparkContext: Starting job: showString at NativeMethodAccessorImpl.java:-2
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Got job 1 (showString at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (showString at NativeMethodAccessorImpl.java:-2)
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Missing parents: List()
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[9] at showString at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/05 05:04:12 INFO storage.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 5.9 KB, free 638.2 KB)
17/10/05 05:04:12 INFO storage.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 3.3 KB, free 641.5 KB)
17/10/05 05:04:12 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on localhost:55073 (size: 3.3 KB, free: 208.7 MB)
17/10/05 05:04:12 INFO spark.SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:1006
17/10/05 05:04:12 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[9] at showString at NativeMethodAccessorImpl.java:-2)
17/10/05 05:04:12 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
17/10/05 05:04:12 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, localhost, partition 0,PROCESS_LOCAL, 2149 bytes)
17/10/05 05:04:12 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 1)
17/10/05 05:04:12 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/people.json:0+179
17/10/05 05:04:14 INFO codegen.GenerateUnsafeProjection: Code generated in 1563.240244 ms
17/10/05 05:04:14 INFO codegen.GenerateSafeProjection: Code generated in 182.529448 ms
17/10/05 05:04:15 INFO executor.Executor: Finished task 0.0 in stage 1.0 (TID 1). 2328 bytes result sent to driver
17/10/05 05:04:15 INFO scheduler.DAGScheduler: ResultStage 1 (showString at NativeMethodAccessorImpl.java:-2) finished in 2.549 s
17/10/05 05:04:15 INFO scheduler.DAGScheduler: Job 1 finished: showString at NativeMethodAccessorImpl.java:-2, took 2.852393 s
17/10/05 05:04:15 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 2547 ms on localhost (1/1)
17/10/05 05:04:15 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
+----+-------+-----+-----+
| age| name|pcode| pcoe|
+----+-------+-----+-----+
|null| Alice|94304| null|
| 30|Brayden|94304| null|
| 19| Carla| null|10036|
+----+-------+-----+-----+

In [4]:

[Spark][Python]DataFrame中取出有限个记录的例子的更多相关文章

  1. [Spark][Python]DataFrame where 操作例子

    [Spark][Python]DataFrame中取出有限个记录的例子 的 继续 [15]: myDF=peopleDF.where("age>21") In [16]: m ...

  2. [Spark][Python]DataFrame select 操作例子

    [Spark][Python]DataFrame中取出有限个记录的例子 的 继续 In [4]: peopleDF.select("age")Out[4]: DataFrame[a ...

  3. [Spark][Python]DataFrame select 操作例子II

    [Spark][Python]DataFrame中取出有限个记录的   继续 In [4]: peopleDF.select("age","name") In ...

  4. [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子

    [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...

  5. [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子

    [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":&quo ...

  6. [Spark][Python][DataFrame][Write]DataFrame写入的例子

    [Spark][Python][DataFrame][Write]DataFrame写入的例子 $ hdfs dfs -cat people.json {"name":" ...

  7. [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子

    [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子 $cat people.json {"name":" ...

  8. [Spark][Python]DataFrame的左右连接例子

    [Spark][Python]DataFrame的左右连接例子 $ hdfs dfs -cat people.json {"name":"Alice",&quo ...

  9. Python dataframe中如何使y列按x列进行统计?

    如图:busy=0 or 1,求出busy=1时los的平均,同样对busy=0时也求出los的平均 Python dataframe中如何使y列按x列进行统计? >> python这个答 ...

随机推荐

  1. Kotlin入门(4)声明与操作数组

    上一篇文章介绍了基本变量类型在Kotlin中的用法,不过这只针对单个变量,如果要求把一组相同类型的变量排列起来,形成一个变量数组,那又该如何声明和操作呢? 在Java中声明数组,跟在C语言中声明是一样 ...

  2. mybatis学习系列一

    1引入dtd约束(6) Mybatis git地址:https://github.com/mybatis/mybatis-3/wiki/Maven 指导手册:http://www.mybatis.or ...

  3. mysql中的utf8mb4、utf8mb4_unicode_ci、utf8mb4_general_ci

    1.utf8与utf8mb4(utf8 most bytes 4) MySQL 5.5.3之后增加了utfmb4字符编码 支持BMP(Basic Multilingual Plane,基本多文种平面) ...

  4. maven(八),阿里云国内镜像,提高jar包下载速度

    镜像 maven默认会从中央仓库下载jar包,这个仓库在国外,而且全世界的人都会从这里下载,所以下载速度肯定是非常慢的.镜像就相当于是中央仓库的一个副本,内容和中央仓库完全一样,目前有不少国内镜像,其 ...

  5. HTML 5 <input> list 属性

    定义和用法 list 属性引用数据列表,其中包含输入字段的预定义选项. 可以用来做关联搜素

  6. redis数据库的简单介绍

    NoSQL:一类新出现的数据库(not only sql) 泛指非关系型的数据库 不支持SQL语法 存储结构跟传统关系型数据库中的那种关系表完全不同,nosql中存储的数据都是KV形式 NoSQL的世 ...

  7. java.lang.RuntimeException: org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.demoDao.getXXX;

    java.lang.RuntimeException: org.apache.ibatis.binding.BindingException: Invalid bound statement (not ...

  8. 第一条:了解Objective-C语言的起源

    第一条:了解Objective-C语言的起源 Objective-C使用的消息结构而非函数调用. Objective-C的重要工作都由"运行组件(runtime component)&quo ...

  9. python六十课——高阶函数之map

    1.高阶函数: 特点:函数的形参位置必须接受一个函数对象 分类学习: 1).map(fn,lsd1,[lsd2...]): 参数一:fn --> 函数对象 参数二:lsd1 --> 序列对 ...

  10. Android的面向组件思想

    http://blog.csdn.net/luoxinwu123/article/details/8019547 面向组件思想是在软件规模扩大,复杂度上升的背景下,以面向对象为基础而提出的一种软件设计 ...