AT3611 Tree MST
题面
题解
考虑最小化\(dis(x, y)\)
这里需要对一种奇怪的最小生成树算法:Boruvka算法有深刻的理解。
考虑该算法的执行过程,我们可以考虑进行点分治,每次找到离分治重心最近的点,然后将分治重心的所有子树的点全部向这个点连边,边数是\(\mathrm{O}(\)子树大小\()\)的,所以总边数在\(\mathrm{O}(n\log_2n)\)级别,最后将这些边跑kruskal求出最小生成树就可以了,总复杂度\(\mathrm{O}(n\log_2^2 n)\)。
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<climits>
#include<algorithm>
#define RG register
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(2e5 + 10);
struct edge { int next, to, dis; } e[maxn << 1];
int head[maxn], e_num;
inline void add_edge(int from, int to, int dis)
{
e[++e_num] = (edge) {head[from], to, dis};
head[from] = e_num;
}
struct node { int x, y; long long w; } a[maxn * 50];
inline int cmp(const node &lhs, const node &rhs) { return lhs.w < rhs.w; }
int n, m, W[maxn], SIZE, size[maxn], root, _max, vis[maxn];
void getRoot(int x, int fa)
{
int max = 0; size[x] = 1;
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(vis[to] || to == fa) continue;
getRoot(to, x); size[x] += size[to]; max = std::max(max, size[to]);
}
max = std::max(max, SIZE - size[x]);
if(max < _max) _max = max, root = x;
}
int pos; long long val;
void dfs(int x, int fa, long long dep)
{
if(dep + W[x] < val) val = dep + W[x], pos = x;
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(vis[to] || to == fa) continue;
dfs(to, x, dep + e[i].dis);
}
}
void link(int x, int fa, long long dep)
{
a[++m] = (node) {x, pos, val + W[x] + dep};
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(vis[to] || to == fa) continue;
link(to, x, dep + e[i].dis);
}
}
void solve(int x)
{
vis[x] = 1; val = LLONG_MAX >> 1; pos = 0;
dfs(x, 0, 0); link(x, 0, 0);
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(vis[to]) continue;
SIZE = _max = size[to]; getRoot(to, x);
solve(root);
}
}
long long ans; int fa[maxn];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
int main()
{
SIZE = _max = n = read();
for(RG int i = 1; i <= n; i++) W[i] = read();
for(RG int i = 1, x, y, z; i < n; i++)
x = read(), y = read(), z = read(),
add_edge(x, y, z), add_edge(y, x, z);
getRoot(1, 0); solve(root);
std::sort(a + 1, a + m + 1, cmp);
for(RG int i = 1; i <= n; i++) fa[i] = i;
for(RG int i = 1; i <= m; i++)
{
if(find(a[i].x) == find(a[i].y)) continue;
fa[find(a[i].x)] = find(a[i].y); ans += a[i].w;
}
printf("%lld\n", ans);
return 0;
}
AT3611 Tree MST的更多相关文章
- AT3611 Tree MST 点分治+最小生成树
正解:点分治+最小生成树 解题报告: 传送门! 然后这题麻油翻译,,,所以这边的建议是先说下题意呢亲 所以题意大概就是说,给一棵n个节点的树,树上每个点都有个权值,然后构造一个完全图,(u,v)之间连 ...
- 【AtCoder3611】Tree MST(点分治,最小生成树)
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...
- 【AT3611】Tree MST
题目 这个题的输入首先就是一棵树,我们考虑一下点分 我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况 就是把当前分治区域内所有的点向距离分治重心最近的点连边 考虑一下这个算法的正确性,如果我们 ...
- BZOJ 1977: [BeiJing2010组队]次小生成树 Tree( MST + 树链剖分 + RMQ )
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... - ...
- 题解-AtCoder Code-Festival2017 Final-J Tree MST
Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...
- 最小生成树 (Minimum Spanning Tree,MST) --- Prim算法
本文链接:http://www.cnblogs.com/Ash-ly/p/5409904.html 普瑞姆(Prim)算法: 假设N = (V, {E})是连通网,TE是N上最小生成树边的集合,U是是 ...
- 最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考 ...
- HDU - 4786 Fibonacci Tree (MST)
题意:给一张由白边和黑边构成的无向图,求是否存在一个生成树,使白边的数量为一个斐波那契数. 分析:白边权值为1,黑边权值为0.求出该图的最小生成树和最大生成树,若这两个值之间存在斐波那契数,则可以,若 ...
- @atcoder - CODE FESTIVAL 2017 Final - J@ Tree MST
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点,第 i 点有一个点权 Xi,再给定一棵边带权的树 ...
随机推荐
- 你不可不知的Java引用类型之——强引用
定义 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器宁愿抛出OOM(OutOfMemoryError)也不会回收它. 说明 不要被这个强字吓到,以为这个引用就很厉害,其实强引用就是程序 ...
- 14.python与数据库之mysql:pymysql、sqlalchemy
相关内容: 使用pymysql直接操作mysql 创建表 查看表 修改表 删除表 插入数据 查看数据 修改数据 删除数据 使用sqlmary操作mysql 创建表 查看表 修改表 删除表 插入数据 查 ...
- C#微信公众号开发——获取access_token
access_token是公众号的全局唯一票据,公众号调用各接口时都需使用access_token.正常情况下access_token有效期为7200秒(两个小时),微信获取access_token接 ...
- Sql Server 判断字符串是否可以转数字
主要是在sql server的内置系统函数ISNUMERIC的基础上,将例外的“+”.“-”.“$”等也进行判断. CREATE FUNCTION [dbo].[fn_IsNumberic]( @st ...
- mysql 临时数据突然变大
晚上收到紧报警,一台数据库服务器磁盘空间使用快速从50%使用率到80%.我们生产的数据库都磁盘是>2T 登录机器发现*.myd文件异常大 登入数据库查询进程 mysql>showproce ...
- 解决windows 挂载 nfs 驱动器中 中文乱码问题
乱码问题,是由于 mount.nfs 命令不支持 utf-8字符集.所以是系统软件支持的问题.在网络上找了很多方案都没能解决. 网上主要有三种方案(1)换解决方案,使用smb 共享,这等于不是解决方法 ...
- fedora 28 , firewalld 防火墙控制,firewall-cmd 管理防火墙规则
今天,在使用fedora时,需要修改防火墙规则,一时间忘记了命令是什么,这里进行记录一下. 目前 fedora 28/ centos 7 使用 firewalld 作为防火墙软件:下面我就怎么简单管理 ...
- 禁用selinux
查看selinux状态: [root@VM000000518 upload]# getenforce Enforcing 禁用: [root@VM000000518 upload]# setenfor ...
- [Tomcat]The JRE_HOME environment variable is not defined correctly
在tomcat的bin目录下,双击startup.bat,闪一下,就没了,后来仔细看了一下黑屏闪的内容如下: the JRE_HOME environment variable is not defi ...
- 面转栅格之ERROR 999999:执行函数时出错
今天进行矢量面转栅格的操作时,总是出现ERROR 999999:执行函数时出错,如下图所示: 刚开始以为是栅格保存的路径太长的问题,后来发现是矢量面的路径问题,我的矢量面是放在自建的图层组下面,如下图 ...