最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结。

1.引言

对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树。在计算机科学中,AVL树是最先发明的自平衡二叉搜索树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。对于N个节点的AVL树,由于树高被限制为lgN,因此其插入查找删除操作耗时为O(lgN)。

2.旋转

在讲解关键步骤插入与删除以前,首先我们先定义一些辅助用的操作:旋转。旋转分为左旋和右旋,其示意图如下:
 
相信上图已经表示的非常明确,这里就不再细说,值得注意的是:在旋转操作中只有指针的改变,其他属性都保持不变。对旋转前后的树使用中序遍历将得到相同的结果。
 
 

3.插入

对于AVL树而言一个关键的操作就是插入操作。往AVL树中插入新的节点可能会引起AVL树的性质被破坏,我们分为以下两种情况来讨论(我们只讨论左子树的情况,右子树的情况只需镜像处理即可):

1.左左情况(LL)

这种情况如下:
A是失去平衡的节点,其失去平衡的原因在于其左节点B中加入了新左节点C,此时我们对A节点进行右旋操作即可恢复AVL树的平衡。
 

2.左右情况(LR)

这种情况需要进行两次旋转,如下图所示:
A是失去平衡的节点,其失去平衡的原因在于其左节点B中加入了新右节点C,此时我们需要两次旋转来解决问题,我们先对B节点进行左旋,再对A节点进行右旋即可。
 
对于RR(右子节点加入新右节点)和RL(右子节点加入新左节点)的情况,只要针对上面的情况进行镜像处理即可。
 

4.删除

对AVL树的某个节点进行删除后,我们需要判断其父节点是否还符合AVL树的性质,如果否则进行与插入情况类似的旋转处理即可,在此不再赘述。

算法二叉搜索树之AVL树的更多相关文章

  1. 从二叉搜索树到AVL树再到红黑树 B树

    这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查 ...

  2. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  3. 数据结构中的树(二叉树、二叉搜索树、AVL树)

    数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有 ...

  4. 从零开始学算法---二叉平衡树(AVL树)

    先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但 ...

  5. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  6. [LeetCode] 538. 把二叉搜索树转换为累加树 ☆(中序遍历变形)

    把二叉搜索树转换为累加树 描述 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. ...

  7. Java实现 LeetCode 538 把二叉搜索树转换为累加树(遍历树)

    538. 把二叉搜索树转换为累加树 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和 ...

  8. 算法进阶面试题04——平衡二叉搜索树、AVL/红黑/SB树、删除和调整平衡的方法、输出大楼轮廓、累加和等于num的最长数组、滴滴Xor

    接着第三课的内容和讲了第四课的部分内容 1.介绍二叉搜索树 在二叉树上,何为一个节点的后继节点? 何为搜索二叉树? 如何实现搜索二叉树的查找?插入?删除? 二叉树的概念上衍生出的. 任何一个节点,左比 ...

  9. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

随机推荐

  1. WPF 自定义Calendar样式(日历样式,周六周日红色显示)

    一.WPF日历控件基本样式 通过Blend获取到Calendar需要设置的三个样式CalendarStyle.CalendarButtonStyle.CalendarDayButtonStyle.Ca ...

  2. NHibernate的基本使用

    一.O/R Mapping 概论 工厂模式+反射+每个数据库的DAL层来解决数据访问层的代码 针对数据库表中字段的变化我们是无法预料的,所以每一次用户需求的修改都会直接导致我们程序员来修改—实体类(B ...

  3. vscode调试适配器已意外终止

    出现这个错误了,找半天没找到办法.师兄支了一招: 把图中红圈部分删掉! 这是个旧的配置文件 ,你删掉它(反正一直报错误,也用不成了!).然后你调试一个文件,它会重新自动添加新的配置文件.

  4. JVM 掌握要点

    重读JVM jvm系列:jvm知识点总览 1. 认识Java虚拟机 默认Hotspot实现 2. 类加载机制 知道双亲委派模型 编译为class javac → 装载 class ClassLoade ...

  5. Linux-centos-7.2-64bit 安装配置mysql

    2018-04-12 安装在/usr/local/下,配置文件在/etc/my.ini 1.下载mysql安装包到 /usr/local/software cd /usr/local/software ...

  6. Flume报 Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight

    报这个错误 需要一个是flume堆内存不够.还有一个就是把channel的容器调大 在channel加配置 type - 组件类型名称必须是memory capacity 100 存储在 Channe ...

  7. JavaScript高级程序设计(第3版)

    准备开始分享阅读笔记 自己收获的同时 让更多的人收益 这也是我力荐的学习javascript基础的书籍

  8. [LeetCode] Maximum Product of Three Numbers 三个数字的最大乘积

    Given an integer array, find three numbers whose product is maximum and output the maximum product. ...

  9. C#标记 [已弃用] 的方法

    [Obsolete]//标记该方法已弃用 /// <summary> /// 你应该调用本类的 OpenMessageBox 方法 /// </summary> public ...

  10. Docker入门之--定制镜像

    1. 首先定制一个Web 服务器为例 1.1 启动镜像 执行下面命令 docker run --name webserver -d -p 80:80 nginx 1.2 查看容器和镜像状态 然后执行下 ...