【BZOJ4653】【NOI2016】区间(线段树)

题面

BZOJ

题解

\(NOI\)良心送分题??

既然是最大长度减去最小长度

莫名想到那道反复减边求最小生成树

从而求出最小的比值

所以这题的套路是一样的

按照长度排序之后

依次加入

如果当前有被覆盖了超过\(m\)次的点

就从前面开始,依次把线段拿走

每次更新一下答案就好啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define INF 2e9
#define MAX 520000
#define lson (now<<1)
#define rson (now<<1|1)
#define rg register
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Seg{int l,r,v;}p[MAX];
bool operator<(Seg a,Seg b){return a.v<b.v;}
struct Node
{
int v,ly;
}t[MAX<<5];
int al,ar; void Modify(int now,int l,int r,int w)
{
if(al<=l&&r<=ar){t[now].v+=w;t[now].ly+=w;return;}
int mid=(l+r)>>1;
if(al<=mid)Modify(lson,l,mid,w);
if(ar>mid)Modify(rson,mid+1,r,w);
t[now].v=max(t[lson].v,t[rson].v)+t[now].ly;
}
inline int Query(){return t[1].v+t[1].ly;}
int n,m,S[MAX<<1],tot;
int main()
{
n=read();m=read();
for(rg int i=1;i<=n;++i)
{
S[++tot]=p[i].l=read();
S[++tot]=p[i].r=read();
p[i].v=p[i].r-p[i].l;
}
sort(&S[1],&S[tot+1]);
tot=unique(&S[1],&S[tot+1])-S-1;
for(rg int i=1;i<=n;++i)
{
p[i].l=lower_bound(&S[1],&S[tot+1],p[i].l)-S;
p[i].r=lower_bound(&S[1],&S[tot+1],p[i].r)-S;
}
sort(&p[1],&p[n+1]);
rg int pos=1,ans=INF;
for(rg int i=1;i<=n;++i)
{
al=p[i].l;ar=p[i].r;
Modify(1,1,tot,1);
if(Query()==m)
{
while(Query()==m)
{
al=p[pos].l;ar=p[pos].r;
ans=min(ans,p[i].v-p[pos].v);
Modify(1,1,tot,-1);
pos++;
}
}
}
printf("%d\n",ans==INF?-1:ans);
return 0;
}

【BZOJ4653】【NOI2016】区间(线段树)的更多相关文章

  1. BZOJ4653 [NOI2016]区间 [线段树,离散化]

    题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...

  2. BZOJ4653: [Noi2016]区间(线段树 双指针)

    题意 题目链接 Sol 按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案.但是对于此题来说好像不好搞 另一种思路是枚举最小的区间长度是多少,这样我们 ...

  3. BZOJ4653:[NOI2016]区间(线段树)

    Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...

  4. 【BZOJ-4653】区间 线段树 + 排序 + 离散化

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 107  Solved: 70[Submit][Status][Di ...

  5. BZOJ.4653.[NOI2016]区间(线段树)

    BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...

  6. [NOI2016]区间 线段树

    [NOI2016]区间 LG传送门 考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的 ...

  7. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  8. UOJ222 NOI2016 区间 线段树+FIFO队列

    首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...

  9. 洛谷$P1712\ [NOI2016]$区间 线段树

    正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...

  10. hdu 1540 Tunnel Warfare (区间线段树(模板))

    http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...

随机推荐

  1. Javascript Sting(字符串)对象

    一, 如何计算字符串的长度? 可以通过.length属性来计算 <script type="text/javascript"> var txt="Hello ...

  2. CocosCreator游戏开发---菜鸟学习之路(一)

    PS(废话): 辞职后在家好久好久了,久到经济不允许了,接着就准备再次出去找工作了,然而工作哪有那么好找,特别是像我这种菜鸟.而且我还准备转行,准备去做游戏,技能等级接近于0,那工作就更难找了.既然如 ...

  3. 017 Java中的静态代理、JDK动态代理、cglib动态代理

    一.静态代理 代理模式是常用设计模式的一种,我们在软件设计时常用的代理一般是指静态代理,也就是在代码中显式指定的代理. 静态代理由业务实现类.业务代理类两部分组成.业务实现类负责实现主要的业务方法,业 ...

  4. GO开发:接口

    接口 接口定义 Interface类型可以定义一组方法,但是这些不需要实现.并且interface不能包含任何变量. type example interface{ Method1(参数列表) 返回值 ...

  5. [Swift]UIKit学习之警告框:UIAlertController和UIAlertView

    Important: UIAlertView is deprecated in iOS 8. (Note that UIAlertViewDelegate is also deprecated.) T ...

  6. angular2 localStorage的使用

    最近从ng1  转ng2     相信 使用ng1的同学都知道 ngStorage 这个插件吧,  存储 本地数据 下面介绍一下 ng2 使用 localStorage 参考 github https ...

  7. Oracle批量操作数据库

    1:批量插入 <insert id="insertBatch" parameterType="Java.util.List" > insert in ...

  8. yml 文件操作方法

    文件读取方法示例: import yaml fr = open('yml_file_address', 'r',encoding='utf-8') data = yaml.load(fr) print ...

  9. [翻译] 编写高性能 .NET 代码--第二章 GC -- 减少分配率, 最重要的规则,缩短对象的生命周期,减少对象层次的深度,减少对象之间的引用,避免钉住对象(Pinning)

    减少分配率 这个几乎不用解释,减少了内存的使用量,自然就减少GC回收时的压力,同时降低了内存碎片与CPU的使用量.你可以用一些方法来达到这一目的,但它可能会与其它设计相冲突. 你需要在设计对象时仔细检 ...

  10. PHP判断是手机端还是PC端

    function check_wap() { if (isset($_SERVER['HTTP_VIA'])) return true; if (isset($_SERVER['HTTP_X_NOKI ...