[code segments] OpenCV3.0 SVM with C++ interface
talk is cheap, show you the code:
/************************************************************************/
/* Name : OpenCV SVM test */
/* Date : 2015/11/7 */
/* Author : aban */
/************************************************************************/
// note : the code is modified from internet.
#include <iostream>
#include <cmath>
#include <string>
using namespace std;
#include <opencv2/opencv.hpp>
#include <opencv2/ml.hpp>
using namespace cv;
bool plotSupportVectors = true;
int numTrainingPoints = 200;
int numTestPoints = 2000;
int size = 200;
int eq = 0;
// accuracy
float evaluate(cv::Mat& predicted, cv::Mat& actual) {
assert(predicted.rows == actual.rows);
int t = 0;
int f = 0;
for (int i = 0; i < actual.rows; i++) {
float p = predicted.at<float>(i, 0);
float a = actual.at<float>(i, 0);
if ((p >= 0.0 && a >= 0.0) || (p <= 0.0 && a <= 0.0)) {
t++;
}
else {
f++;
}
}
return (t * 1.0) / (t + f);
}
// plot data and class
void plot_binary(cv::Mat& data, cv::Mat& classes, string name) {
cv::Mat plot(size, size, CV_8UC3);
plot.setTo(cv::Scalar(255.0, 255.0, 255.0));
for (int i = 0; i < data.rows; i++) {
float x = data.at<float>(i, 0) * size;
float y = data.at<float>(i, 1) * size;
if (classes.at<float>(i, 0) > 0) {
cv::circle(plot, Point(x, y), 2, CV_RGB(255, 0, 0), 1);
}
else {
cv::circle(plot, Point(x, y), 2, CV_RGB(0, 255, 0), 1);
}
}
cv::namedWindow(name, CV_WINDOW_KEEPRATIO);
cv::imshow(name, plot);
}
// function to learn
int f(float x, float y, int equation) {
switch (equation) {
case 0:
return y > sin(x * 10) ? -1 : 1;
break;
case 1:
return y > cos(x * 10) ? -1 : 1;
break;
case 2:
return y > 2 * x ? -1 : 1;
break;
case 3:
return y > tan(x * 10) ? -1 : 1;
break;
default:
return y > cos(x * 10) ? -1 : 1;
}
}
// label data with equation
cv::Mat labelData(cv::Mat points, int equation) {
cv::Mat labels(points.rows, 1, CV_32FC1);
for (int i = 0; i < points.rows; i++) {
float x = points.at<float>(i, 0);
float y = points.at<float>(i, 1);
labels.at<float>(i, 0) = f(x, y, equation);
}
return labels;
}
void svm(cv::Mat& trainingData, cv::Mat& trainingClasses, cv::Mat& testData, cv::Mat& testClasses) {
Mat traning_label(trainingClasses.rows, 1, CV_32SC1);
for (int i = 0; i < trainingClasses.rows; i++){
traning_label.at<int>(i, 0) = trainingClasses.at<float>(i, 0);
}
cv::Ptr<cv::ml::SVM> svm = ml::SVM::create();
svm->setType(ml::SVM::Types::C_SVC);
svm->setKernel(ml::SVM::KernelTypes::RBF);
//svm->setDegree(0); // for poly
svm->setGamma(20); // for poly/rbf/sigmoid
//svm->setCoef0(0); // for poly/sigmoid
svm->setC(7); // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
//svm->setNu(0); // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
//svm->setP(0); // for CV_SVM_EPS_SVR
svm->setTermCriteria(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 1E-6));
svm->train(trainingData, ml::SampleTypes::ROW_SAMPLE, traning_label);
cv::Mat predicted(testClasses.rows, 1, CV_32F);
svm->predict(testData, predicted);
cout << "Accuracy_{SVM} = " << evaluate(predicted, testClasses) << endl;
plot_binary(testData, predicted, "Predictions SVM");
// plot support vectors
if (plotSupportVectors) {
cv::Mat plot_sv(size, size, CV_8UC3);
plot_sv.setTo(cv::Scalar(255.0, 255.0, 255.0));
Mat support_vectors = svm->getSupportVectors();
for (int vecNum = 0; vecNum < support_vectors.rows; vecNum++){
cv::circle(plot_sv, Point(support_vectors.row(vecNum).at<float>(0)*size, support_vectors.row(vecNum).at<float>(1)*size), 3, CV_RGB(0, 0, 0));
}
namedWindow("Support Vectors", CV_WINDOW_KEEPRATIO);
cv::imshow("Support Vectors", plot_sv);
}
}
int main(){
cv::Mat trainingData(numTrainingPoints, 2, CV_32FC1);
cv::Mat testData(numTestPoints, 2, CV_32FC1);
cv::randu(trainingData, 0, 1);
cv::randu(testData, 0, 1);
cv::Mat trainingClasses = labelData(trainingData, eq);
cv::Mat testClasses = labelData(testData, eq);
plot_binary(trainingData, trainingClasses, "Training Data");
plot_binary(testData, testClasses, "Test Data");
svm(trainingData, trainingClasses, testData, testClasses);
waitKey(0);
return 0;
}
[code segments] OpenCV3.0 SVM with C++ interface的更多相关文章
- 【OpenCV】opencv3.0中的SVM训练 mnist 手写字体识别
前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的 ...
- Atitit opencv3.0 3.1 3.2 新特性attilax总结
Atitit opencv3.0 3.1 3.2 新特性attilax总结 1. 3.0OpenCV 3 的改动在哪?1 1.1. 模块构成该看哪些模块?2 2. 3.1新特性 2015-12-21 ...
- ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及配置matlab和python接口过程记录
已有条件: ubuntu14.04+cuda7.5+anaconda2(即python2.7)+matlabR2014a 上述已经装好了,开始搭建caffe环境. 1. 装cudnn5.1.3,参照: ...
- VS2013 Community配置OpenCV3.0.0
配置环境:32位win7系统+VS2013 Community版本 1.首先从OpenCV官网上下载最新版本的OpenCV for Windows. 2.直接双击打开下载得到的opencv-3.0.0 ...
- opencv3.0 在 android 上的使用
下载 OpenCV-3.0.0-android-sdk-1.zip 打开 intellj,新建立一个 android 工程后选择工程属性,导入模块(Import module from externa ...
- Caffe搭建:Ubuntu14.04 + CUDA7.0 + opencv3.0 + Matlab2014A
从Hinton在science上发表深度学习训练开创新的文章以来,深度学习火了整整有3年多,而且随着新的硬件和算法的提出,深度学习正在应用于越来越多的领域,发挥其算法的优势. 实验室并没有赶上第一波深 ...
- opencv3.0中contrib模块的添加+实现SIFT/SURF算法
平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段 ...
- Windows环境中编译opencv3.0同时加入OPENCV_contrib库及解决遇到相关问题[contrib 必须要3.1以上的opencv才支持了]
更新:现在contrib库必须要opencv3.1以上才能支持编译通过了. 方法和步骤还是和本篇文章一样. ############################################## ...
- OpenCV3 Ref SVM : cv::ml::SVM Class Reference
OpenCV3 Ref SVM : cv::ml::SVM Class Reference OpenCV2: #include <opencv2/core/core.hpp>#inclu ...
随机推荐
- MySQL集合操作类型
SQL语言包含3个集合操作符(union.intersect.expect)以执行各种集合操作. 此外,每个集合操作符可以有两种修饰符:一个表是包含重复项,另一个表是去除重复项(但不一定时所有的重复项 ...
- Struts2笔记分享(一)
Struts2概述1.简介Struts就是在Model2的基础上实现的一个MVC框架,它只有一个中心控制器,采用XML定制的转向的URL,采用Action来处理逻辑.2.Struts2的MVC模式MV ...
- mysql索引类型和索引方法
索引类型 mysql索引类型normal,unique,full text的区别是什么? normal:表示普通索引 unique:表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家(树链剖分)
题目描述松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前来 ...
- 【转】C++ STL快速入门
转自:https://www.cnblogs.com/skyfsm/p/6934246.html 冠军的试炼 悟已往之不谏,知来者之可追 博客园 首页 新随笔 联系 订阅 管理 随笔 - 60 文章 ...
- promise 的基本概念 和如何解决js中的异步编程问题 对 promis 的 then all ctch 的分析 和 await async 的理解
* promise承诺 * 解决js中异步编程的问题 * * 异步-同步 * 阻塞-无阻塞 * * 同步和异步的区别? 异步;同步 指的是被请求者 解析:被请求者(该事情的处理者)在处理完事情的时候的 ...
- Redis数据类型--string
在Redis中支持丰富的数据类型的存储系统,包括:字符串(string),散列(hashes),列表(lists),集合(sets),有序集合(sorted sets),与范围查询,bitmaps,h ...
- [HNOI 2010]Planar
Description 题库链接 给出 \(T\) 个 \(N\) 个节点 \(M\) 条边的无向图(无重边自环),并给出它们各自的哈密顿回路.分别判断每个图是否是平面图. \(T\leq 100,3 ...
- BZOJ4424: Cf19E Fairy
树上差分的代码很简洁,dfs+差分即可 这题很多坑点啊,比如重边自环好坑 #include<cstdio> #include<cstdlib> #include<algo ...
- 【luogu3384】【模板】树链剖分
省选被暴虐,成功爆0...顺便ditoly差点全省总分Rank1 orz..... 于是开始赶进度学新算法.... 然后决定开始学习树剖orz... 发现树剖很好用啊!!!! 然后做了模板题. 题目就 ...