题目大意

  有一个 \(n\times n\) 的矩阵 \(A\)。最开始 \(A\) 中每个元素的值都为 \(0\)。

  有 \(m\) 次操作,每次给你 \(x_1,x_2,y_1,y_2,w\),对于满足 \(x_1\leq i\leq x_2,y_1\leq j\leq y_2\) 的数对 \((i,j)\),把 \(A_{i,j}\) 的值增加 \(w\)。

  最后构造一个 \(n\) 个点的无向图 \(G\)。对于满足 \(1\leq i<j\leq n\) 的数对 \((i,j)\),在 \(G\) 中加一条连接着 \(i,j\),边权为 \(A_{i,j}\) 的边。

  求 \(G\) 的最小生成树的边权和。

  \(1\leq n,m\leq 100000,1\leq x_1\leq x_2<y_1\leq y_2\leq n,-{10}^6\leq w\leq {10}^6\);

题解

  似乎 prim 和 kruskal 算法都不太好做这道题。

  还有个算法叫 boruvka。

  大概就是每一轮对于每个连通块求出这个连通块与其他连通块间边权最小的边,然后把这两个连通块缩在一起。

  总共会缩 \(O(\log n)\) 轮。

  用扫描线+线段树处理出最小值和(连通块与最小值不同)的最小值。

  这样如果最小值和 \(i\) 在同一个连通块中,就选第二个就好了。

  时间复杂度:\(O(m\log^2n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll inf=0x3fffffffffffffffll;
typedef std::pair<pll,pll> orzzjt;
const int N=100010;
orzzjt merge(orzzjt a,orzzjt b)
{
orzzjt c;
if(a.first<b.first)
{
c=a;
if(b.first.second!=c.first.second)
c.second=min(c.second,b.first);
else
c.second=min(c.second,b.second);
}
else
{
c=b;
if(a.first.second!=c.first.second)
c.second=min(c.second,a.first);
else
c.second=min(c.second,a.second);
}
return c;
}
int c[N];
namespace seg
{
orzzjt s[4*N];
ll t[4*N];
#define mid ((L+R)>>1)
#define lc (p<<1)
#define rc ((p<<1)|1)
void mt(int p)
{
s[p]=merge(s[lc],s[rc]);
}
void build(int p,int L,int R)
{
t[p]=0;
if(L==R)
{
s[p].first=pll(0,c[L]);
s[p].second=pll(inf,0);
return;
}
build(lc,L,mid);
build(rc,mid+1,R);
mt(p);
}
void add(int p,ll v)
{
t[p]+=v;
s[p].first.first+=v;
s[p].second.first+=v;
}
void push(int p)
{
if(t[p])
{
add(lc,t[p]);
add(rc,t[p]);
t[p]=0;
}
}
void add(int p,int l,int r,ll v,int L,int R)
{
if(l<=L&&r>=R)
{
add(p,v);
return;
}
push(p);
if(l<=mid)
add(lc,l,r,v,L,mid);
if(r>mid)
add(rc,l,r,v,mid+1,R);
mt(p);
}
orzzjt query(int p,int l,int r,int L,int R)
{
if(l<=L&&r>=R)
return s[p];
push(p);
if(r<=mid)
return query(lc,l,r,L,mid);
if(l>mid)
return query(rc,l,r,mid+1,R);
return merge(query(lc,l,r,L,mid),query(rc,l,r,mid+1,R));
}
}
struct info
{
int x,y1,y2,w;
info(int a=0,int b=0,int c=0,int d=0):x(a),y1(b),y2(c),w(d){}
};
int cmp(info a,info b)
{
return a.x<b.x;
}
info a[4*N];
int n,m;
int t;
int cnt;
int f[N];
ll ans;
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int merge(int x,int y)
{
if(find(x)==find(y))
return 0;
f[find(x)]=find(y);
return 1;
}
pll h[N];
int e[N];
int main()
{
open("72G");
scanf("%d%d",&n,&m);
int x1,x2,y1,y2,w;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d%d",&x1,&x2,&y1,&y2,&w);
a[++t]=info(x1,y1,y2,w);
a[++t]=info(x2+1,y1,y2,-w);
a[++t]=info(y1,x1,x2,w);
a[++t]=info(y2+1,x1,x2,-w);
}
sort(a+1,a+t+1,cmp);
cnt=n;
for(int i=1;i<=n;i++)
{
f[i]=i;
c[i]=i;
e[i]=i;
}
while(cnt>1)
{
seg::build(1,1,n);
int j=1;
for(int i=1;i<=cnt;i++)
h[i]=pll(inf,inf);
for(int i=1;i<=n;i++)
{
for(;j<=t&&a[j].x==i;j++)
seg::add(1,a[j].y1,a[j].y2,a[j].w,1,n);
orzzjt s;
if(i==1)
s=seg::query(1,i+1,n,1,n);
else if(i==n)
s=seg::query(1,1,i-1,1,n);
else
s=merge(seg::query(1,1,i-1,1,n),seg::query(1,i+1,n,1,n));
if(s.first.second!=c[i])
h[c[i]]=min(h[c[i]],s.first);
else
h[c[i]]=min(h[c[i]],s.second);
}
for(;j<=t;j++)
seg::add(1,a[j].y1,a[j].y2,a[j].w,1,n);
for(int i=1;i<=cnt;i++)
if(merge(e[i],e[h[i].second]))
ans+=h[i].first;
cnt=0;
for(int i=1;i<=n;i++)
if(find(i)==i)
{
c[i]=++cnt;
e[cnt]=i;
}
for(int i=1;i<=n;i++)
c[i]=c[find(i)];
}
printf("%lld\n",ans);
return 0;
}

【CSA72G】【XSY3316】rectangle 线段树 最小生成树的更多相关文章

  1. 【JZOJ5060】【GDOI2017第二轮模拟day1】公路建设 线段树+最小生成树

    题面 在Byteland一共有n 个城市,编号依次为1 到n,它们之间计划修建m条双向道路,其中修建第i 条道路的费用为ci. Byteasar作为Byteland 公路建设项目的总工程师,他决定选定 ...

  2. 【做题】CSA72G - MST and Rectangles——Borůvka&线段树

    原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...

  3. 【省选十连测之一】【线段树】【最小生成树之Kruskal】公路建设

    目录 题意 输入格式 输出格式 数据范围 思路 代码 题意 有n个点,m条双向道路,其中第条公路的两个端点是u[i],v[i],费用是c[i]. 现在给出q个询问,每次给定一个L和一个R,要求你只能够 ...

  4. 2018.10.26 NOIP模拟 图(最小生成树+线段树合并)

    传送门 首先最开始说的那个一条路径的权值就是想告诉你两个点之间的贡献就是瓶颈边的权值. 那么肯定要用最小生成树算法. 于是我考场上想了30min+30min+30min+的树形dpdpdp 发现转移是 ...

  5. bzoj 5216 [Lydsy2017省队十连测]公路建设 线段树维护 最小生成树

    [Lydsy2017省队十连测]公路建设 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 93  Solved: 53[Submit][Status][ ...

  6. 【bzoj1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+权值线段树合并

    题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z ...

  7. [BZOJ1790][AHOI2008]Rectangle 矩形藏宝地(四维偏序,CDQ+线段树)

    1790: [Ahoi2008]Rectangle 矩形藏宝地 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 553  Solved: 193[Subm ...

  8. 【bzoj2238】Mst 最小生成树+树链剖分+线段树

    题目描述 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的边在下一条询问中依然存在) 输入 第一行两 ...

  9. 【Codeforces827D/CF827D】Best Edge Weight(最小生成树性质+倍增/树链剖分+线段树)

    题目 Codeforces827D 分析 倍增神题--(感谢T*C神犇给我讲qwq) 这道题需要考虑最小生成树的性质.首先随便求出一棵最小生成树,把树边和非树边分开处理. 首先,对于非树边\((u,v ...

随机推荐

  1. 基础设施DevOps演进之路

    Related Links:Zuul  https://github.com/Netflix/zuulCAT     https://github.com/dianping/cat Apollo  h ...

  2. 《JavaScript高级程序设计》笔记:使用Canvas绘图(15)

    基本用法 要使用<canvas>元素,必须先设置其width和height属性,指定可以绘图的区域大小.出现在开始和结束标签中的内容是后备信息,如果浏览器不支持<canvas> ...

  3. 使用WordPress制作微信小程序

    0 产品由来 微信小程序具有即来即用.轻量化.与微信贴合性好的特点.对于独立产品来说,使用微信小程序能够较好的服务与个人及现在的互联网社群,提升用户体验. 本次设计的微信小程序是面向无人机开发者社区的 ...

  4. 生鲜配送管理系统_升鲜宝V2.0 小标签打印功能【代配送商品打印小标签功能】说明_15382353715

    小标签打印说明 小标签打印可以打印本系统的订单商品数量,也可以把外部的订单商品导入本系统进行打印. 打印本系统中的订单商品操作说明[上篇文章已经讲解相关的操作说明] 打印本系统之外的订单商品明细清单 ...

  5. C# 通过KD树进行距离最近点的查找.

    本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码.这也是我自己动手实现的第一个树形的数据结构.理解上难免会有偏差,敬请各位 ...

  6. Jmeter输出完美报告

    做技术的就爱折腾, 看到哪里不够完美,就想把它改改, 使其顺眼. 同样Jmeter输出的报告实在差强人意, 截图发给领导看不够美观, 缺少统计汇总, 有什么方法给对方一个地址就可以浏览报告? 答案是肯 ...

  7. DVWA 黑客攻防演练(十三)JS 攻击 JavaScript Attacks

    新版本的 DVWA 有新东西,其中一个就是这个 JavaScript 模块了. 玩法也挺特别的,如果你能提交 success 这个词,成功是算你赢了.也看得我有点懵逼. 初级 如果你改成 " ...

  8. C# 霍尼韦尔扫码枪扫码打印

    程序运行背景条件: 1.将扫码枪调制串口驱动模式 2.将扫码枪所在串口拆分成几个虚拟串口 3.扫码枪扫描条码就打印条码 4.WinForm程序 条码控件使用 DevExpress.XtraEditor ...

  9. 利用Navicat高效率postgresql转mysql数据库

    本人很喜欢postgresql数据库,也一直认为postgresql比mysql要更好更强大. 可生态环境太差了,无奈,最近要把一个小站转成mysql数据库. 小站主要表数据110万,pg_dump备 ...

  10. centos7的主机名配置

    centos7的主机名配置 方法一:通过配置文件/etc/hostname (重启后生效) 方法二:通过命令hostnamectl  set-hostname    新主机名(会自动把主机名改为小写) ...