[TJOI 2016&HEOI 2016]排序
Description
Input
Output
输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。
Sample Input
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3
Sample Output
题解(转载)
首先常规套路,如果值域较小,那么枚举值域线段树区间覆盖
那么这题这么做这个转换呢?直接二分答案,把小于的部分赋为$0$,大于等于部分$1$,这样转换过来了,注意线段树只要存$1$就好,$0$直接可以相减得出
//It is made by Awson on 2017.10.23
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Lr(o) (o<<1)
#define Rr(o) (o<<1|1)
using namespace std;
const int N = 1e5; int n, m, q, a[N+];
struct operat {
int opt, l, r;
}p[N+];
struct tt {
int sgm[(N<<)+], lazy[(N<<)+];
void build(int o, int l, int r, int key) {
lazy[o] = ;
if (l == r) {
sgm[o] = (a[l]>=key); return;
}
int mid = (l+r)>>;
build(Lr(o), l, mid, key); build(Rr(o), mid+, r, key);
sgm[o] = sgm[Lr(o)]+sgm[Rr(o)];
}
void pushdown(int o, int l, int r, int mid) {
if (lazy[o] == ) {
lazy[Lr(o)] = lazy[Rr(o)] = ;
sgm[Lr(o)] = mid-l+, sgm[Rr(o)] = r-mid;
lazy[o] = ;
}else if (lazy[o] == -) {
lazy[Lr(o)] = lazy[Rr(o)] = -;
sgm[Lr(o)] = , sgm[Rr(o)] = ;
lazy[o] = ;
}
}
void update(int o, int l, int r, int a, int b, int key) {
if (a <= l && r <= b) {
if (key) lazy[o] = , sgm[o] = r-l+;
else lazy[o] = -, sgm[o] = ;
return;
}
int mid = (l+r)>>;
pushdown(o, l, r, mid);
if (a <= mid) update(Lr(o), l, mid, a, b, key);
if (mid < b) update(Rr(o), mid+, r, a, b, key);
sgm[o] = sgm[Lr(o)]+sgm[Rr(o)];
}
int query(int o, int l, int r, int a, int b) {
if (a <= l && r <= b) return sgm[o];
int mid = (l+r)>>;
pushdown(o, l, r, mid);
int ca = , cb = ;
if (a <= mid) ca = query(Lr(o), l, mid, a, b);
if (mid < b) cb = query(Rr(o), mid+, r, a, b);
return ca+cb;
}
}T; bool judge(int x) {
T.build(, , n, x);
int l, r, cnt0, cnt1;
for (int i = ; i <= m; i++) {
l = p[i].l, r = p[i].r;
cnt1 = T.query(, , n, l, r); cnt0 = r-l+-cnt1;
if (p[i].opt == ) {
if (cnt0 != ) T.update(, , n, l, l+cnt0-, );
if (cnt1 != ) T.update(, , n, l+cnt0, r, );
}else {
if (cnt1 != ) T.update(, , n, l, l+cnt1-, );
if (cnt0 != ) T.update(, , n, l+cnt1, r, );
}
}
return T.query(, , n, q, q) == ;
}
void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for (int i = ; i <= m; i++) scanf("%d%d%d", &p[i].opt, &p[i].l, &p[i].r);
scanf("%d", &q);
int l = , r = n, ans;
while (l <= r) {
int mid = (l+r)>>;
if (judge(mid)) l = mid+, ans = mid;
else r = mid-;
}
printf("%d\n", ans);
}
int main() {
work();
return ;
}
[TJOI 2016&HEOI 2016]排序的更多相关文章
- [TJOI 2016&HEOI 2016]求和
Description 题库链接 求 \[f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\times 2^j \times (j!)\] \(S(i, j)\) 表示第二类斯 ...
- [HEOI 2016] sort
[HEOI 2016] sort 解题报告 码线段树快调废我了= = 其实这题貌似暴力分很足,直接$STL$的$SORT$就能$80$ 正解: 我们可以二分答案来做这道题 假设我们二分的答案为$a$, ...
- PHPStorm 2016.2 - 2016.3许可证服务器
最快,最安全的选择,以激活您的PHPStorm 2016.2 - 2016.3,这是足够的激活服务器,软件将自动激活.该过程将不断更新,如果不工作评价写入,如果有,以激活没有列出的服务器也可以说. 通 ...
- Windows Server 2016 + SCO 2016 安装及配置介绍
Windows Server 2016 + SCO 2016 安装及配置介绍 高文龙关注1人评论6332人阅读2017-02-26 23:23:02 Windows Server 2016 + SCO ...
- 「HEOI 2016/TJOI 2016」求和
题目链接 戳我 \(Solution\) 先化简式子: \[f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end {Bmatrix}*2^j ...
- HEOI 2016 游记
闲来无事,把这玩意儿补上. OI生涯中第一次正经的考试.挂的很惨. Day -1 不小心把机油(雾)sm惹毛了. 好像没啥别的事儿. Day 0 说好了上午直接去机房,然而临时说让我们上完前两节课再去 ...
- 数据结构(并查集||树链剖分):HEOI 2016 tree
[注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q ...
- 字符串[未AC](后缀自动机):HEOI 2016 str
超级恶心,先后用set维护right,再用主席树维护,全部超时,本地测是AC的.放心,BZOJ上还是1S限制,貌似只有常数优化到一定境界的人才能AC吧. 总之我是精神胜利了哦耶QAQ #include ...
- [HEOI 2016] seq
题解: 发现多决策且明显无后效性,果断dp,那么转移方程F[i]=F[j]+1 设R[I]为改变之后的最大值,L[i]为改变之后的最小值 由于只能改变一个元素 所以转移的条件是 (j<i &am ...
随机推荐
- 第2次作业:stream案例分析
摘要:本次随笔是对stream软件进行一次案例分析,以个人观点分析stream为什么成功. 一.介绍产品相关信息 1.我选择的商品是stream 2.选择该产品的主要原因准要是因为自己本身喜欢玩这个平 ...
- 利用flask 实现简单模版站
from flask import Flask,render_template from flask import request app = Flask(__name__) @app.route(' ...
- git基本用法
基本用法(下) 一.实验说明 本节实验为 Git 入门第二个实验,继续练习最常用的git命令. 1.1 实验准备 在进行该实验之前,可以先clone一个练习项目gitproject ...
- bzoj千题计划108:bzoj1018: [SHOI2008]堵塞的交通traffic
http://www.lydsy.com/JudgeOnline/problem.php?id=1018 关键点在于只有两行 所以一个2*m矩形连通情况只有6种 编号即对应代码中的a数组 线段树维护 ...
- H5新特性之webWorker
众所周知javascript是单线程语言,这就是js开发难度较低的原因了,因为不需要解决多线程的资源共享问题(例如死锁),但是单线程性能并不好,因此多了一个webWorker实现js的多进程来提升js ...
- EasyUI Datagrid 分页的情况下实现点击表头的小三角图标对数据库中所有数据重新排序
说明一下: 当点击 datagrid 表头某一列的小三角图标时,easyui 本身是有排序的,但是在当我们对 datagrid 进行了分页的情况下,点击排序只是对当前页的数据进行排序,而需求需要我对数 ...
- Netty事件监听和处理(下)
上一篇 介绍了事件监听.责任链模型.socket接口和IO模型.线程模型等基本概念,以及Netty的整体结构,这篇就来说下Netty三大核心模块之一:事件监听和处理. 前面提到,Netty是一个NIO ...
- NHibernate与IbatisNet的简单比较
NHibernate是当前最流行的Java O/R mapping框架Hibernate的移植版本,当前版本是1.0 rc-1.它出身于sf.net..IbatisNet是另外一种优秀的Java O/ ...
- 详解get请求和post请求参数中文乱码的解决办法
首先出现中文乱码的原因是tomcat默认的编码方式是"ISO-8859-1",这种编码方式以单个字节作为一个字符,而汉字是以两个字节表示一个字符的. 一,get请求参数中文乱码的解 ...
- Python_fullstack_test1
1.执行Python脚本的两种方式 使用交互式的带提示符的解释器或使用源文件 2.简述位.字节的关系 位是计算机中最小计量单位,用bit表示 字节是计算机中最小存储单位,用Byte表示 1字节=8位, ...