Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定要是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始我在想的时候,是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。我们可以一位一位的网上叠加,比如对于题目中给的例子 [1,2,3] 来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为 [1],现在我们有两个自己 [] 和 [1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到 [2],[1, 2],那么现在所有的子集合为 [], [1], [2], [1, 2],同理处理3的情况可得 [3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了,代码如下:

解法一:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res();
sort(S.begin(), S.end());
for (int i = ; i < S.size(); ++i) {
int size = res.size();
for (int j = ; j < size; ++j) {
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};

整个添加的顺序为:

[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]

下面来看递归的解法,相当于一种深度优先搜索,参见网友 JustDoIt的博客,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:

                        []
/ \
/ \
/ \
[] []
/ \ / \
/ \ / \
[ ] [] [] []
/ \ / \ / \ / \
[ ] [ ] [ ] [] [ ] [] [] []

解法二:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
}
}
};

整个添加的顺序为:

[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]

最后我们再来看一种解法,这种解法是 CareerCup 书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true 表示这个数在子集中出现,false 表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有 2中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3] 这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了,参见代码如下:

  1 2 3 Subset
0 F F F []
1 F F T 3
2 F T F 2
3 F T T 23
4 T F F 1
5 T F T 13
6 T T F 12
7 T T T 123

解法三:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
sort(S.begin(), S.end());
int max = << S.size();
for (int k = ; k < max; ++k) {
vector<int> out = convertIntToSet(S, k);
res.push_back(out);
}
return res;
}
vector<int> convertIntToSet(vector<int> &S, int k) {
vector<int> sub;
int idx = ;
for (int i = k; i > ; i >>= ) {
if ((i & ) == ) {
sub.push_back(S[idx]);
}
++idx;
}
return sub;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/78

类似题目:

Subsets II

Generalized Abbreviation

Letter Case Permutation

参考资料:

https://leetcode.com/problems/subsets/

https://leetcode.com/problems/subsets/discuss/27288/My-solution-using-bit-manipulation

https://leetcode.com/problems/subsets/discuss/27278/C%2B%2B-RecursiveIterativeBit-Manipulation

https://leetcode.com/problems/subsets/discuss/27281/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Subsets 子集合的更多相关文章

  1. [LeetCode] 78. Subsets 子集合

    Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...

  2. [CareerCup] 9.4 Subsets 子集合

    9.4 Write a method to return all subsets of a set. LeetCode上的原题,请参见我之前的博客Subsets 子集合和Subsets II 子集合之 ...

  3. [LeetCode] 90. Subsets II 子集合 II

    Given a collection of integers that might contain duplicates, nums, return all possible subsets (the ...

  4. LeetCode 78. Subsets(子集合)

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

  5. [LeetCode] 916. Word Subsets 单词子集合

    We are given two arrays A and B of words.  Each word is a string of lowercase letters. Now, say that ...

  6. LeetCode:Subsets I II

    求集合的所有子集问题 LeetCode:Subsets Given a set of distinct integers, S, return all possible subsets. Note: ...

  7. LeetCode Subsets II (DFS)

    题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...

  8. [LeetCode] Subsets I (78) & II (90) 解题思路,即全组合算法

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a ...

  9. [Leetcode] subsets 求数组所有的子集

    Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...

随机推荐

  1. 打造高效前端工作环境 - tmux

    打造高效前端工作环境 - tmux 前言  现在前端开发可不容易啊,先打开个VIM,然后再打开个lite-server,一不小心写个ES2015还要打开个gulp来做预编译,如果能把这么多个窗口放在一 ...

  2. FlashBuilder项目环境配置

    一 .安装Flash Builder 1.  修改host文件 1.1 找到host文件,复制到桌面修改. 在"C:\Windows\System32\drivers\etc"文件 ...

  3. SHA-256算法

    SHA-.h #ifndef _SHA_256_H #define _SHA_256_H #include<iostream> using namespace std; typedef u ...

  4. 用大白话聊聊JavaSE -- 如何理解Java Bean(一)

    首先,在开始本章之前,先说一个总的概念:所谓的Java Bean,就是一个java类,编译后成为了一个后缀名是 .class的文件.这就是Java Bean,很多初学者,包括当年的我自己,总是被这些专 ...

  5. [转载]IIS7报500.23错误的解决方法

    原文出处: 原文作者:pizibaidu 原文链接:http://pizibaidu.blog.51cto.com/1361909/1794446 背景:今天公司终端上有一个功能打开异常,报500错误 ...

  6. 常用原生JS方法

    备注:一下的方法都是包裹在一个EventUtil对象里面的,直接采用对象字面量定义方法了... ①添加事件方法 1 2 3 4 5 6 7 8 9 addHandler:function(elemen ...

  7. AlloyRenderingEngine之Shape

    写在前面 不读文章,只对代码感兴趣可以直接跳转到这里 https://github.com/AlloyTeam/AlloyGameEngine 然后star一下,多谢支持:). 游戏或者应用中,不是所 ...

  8. 阶段一:为View设置阴影和弹出动画(天气应用)

    “阶段一”是指我第一次系统地学习Android开发.这主要是对我的学习过程作个记录. 上一篇阶段一:通过网络请求,获得并解析JSON数据(天气应用)完成了应用的核心功能,接下来就要对它进行优化.今天我 ...

  9. webservice入门实例,CXF方式

    1.下载CXF,及先关jar包. CXF 下载地址:http://cxf.apache.org/download.html,选择"File"列中的zip格式下载.解压后可以看到一些 ...

  10. Unity插件之Unity调用C#编译的DLL

    Unity插件分为两种:托管插件(Managed Plugins)和本地插件(Native Plugins).本文先来说说Unity中的托管插件,本地插件的文章留到下一篇文章再说. 有时候我们会有这样 ...