Description

题库链接

找出在 \([A,B]\) 间满足相邻位差值至少为 \(2\) 的正整数个数。

\(1\leq A,B\leq 2\cdot 10^9\)

Solution

数位 \(DP\) 。

还是按照套路 \(f_{i,j}\) 为 \(i\) 位数,第 \(1\) 位为 \(j\) 的满足条件的个数。

然后计算的时候要注意若前面的位数已经不满足了,就直接退出。

Code

//It is made by Awson on 2018.2.25
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } LL f[20][10], a, b; void pre() {
for (int i = 0; i <= 9; i++) f[1][i] = 1;
for (int i = 2; i <= 10; i++) {
for (int j = 0; j <= 9; j++) {
for (int k = 0; k <= j-2; k++) f[i][j] += f[i-1][k];
for (int k = j+2; k <= 9; k++) f[i][j] += f[i-1][k];
}
}
}
LL get(int x) {
int a[20], tot = 0; LL ans = 0;
while (x) a[++tot] =x%10, x /= 10;
for (int i = tot-1; i >= 1; i--) for (int j = 1; j <= 9; j++) ans += f[i][j];
for (int i = 1; i < a[tot]; i++) ans += f[tot][i];
for (int i = tot-1, last = a[tot]; i >= 1; i--) {
for (int j = 0; j < a[i]; j++) {
if (Abs(j-last) < 2) continue;
ans += f[i][j];
}
last = a[i]; if (Abs(a[i+1]-a[i]) < 2) break;
}
return ans;
}
void work() {
pre(); read(a), read(b); writeln(get(b+1)-get(a));
}
int main() {
work(); return 0;
}

[SCOI 2009]windy数的更多相关文章

  1. [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】

    题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...

  2. 一本通1587【例 3】Windy 数

    1587: [例 3]Windy 数 时间限制: 1000 ms         内存限制: 524288 KB 题目描述 原题来自:SCOI 2009 Windy 定义了一种 Windy 数:不含前 ...

  3. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  4. BZOJ1026: [SCOI2009]windy数

    传送门 md直接wa了78次,身败名裂 没学过数位DP硬搞了一道数位DP的模板题,感觉非常的愉(sha)悦(cha). 二分转化枚举思想.首先DP预处理出来$f[i][j]$表示有$i$位且第$i$位 ...

  5. BZOJ 1026 【SCOI2009】 windy数

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...

  6. 【BZOJ-1026】windy数 数位DP

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5230  Solved: 2353[Submit][Sta ...

  7. [bzoj 1026]windy数(数位DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 分析: 简单的数位DP啦 f[i][j]表示数字有i位,最高位的数值为j的windy数总 ...

  8. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  9. 【BZOJ 1026】 [SCOI2009]windy数

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? In ...

随机推荐

  1. PTA的使用简介

    PTA(Programming Teaching Assistant)是PAT(Programming Ability Test)的配套练习平台. 1.关于PAT PAT(Programming Ab ...

  2. Alpha冲刺Day7

    Alpha冲刺Day7 一:站立式会议 今日安排: 由林静和周静平共同完成企业风险分级展示这一模块的分级列表展示,该模块主要提供企业自查风险的条件查询功能 由黄腾飞和张梨贤共同完成企业风险分级展示的分 ...

  3. I/O多路转接之poll 函数

    poll 一.poll()函数: 这个函数是某些Unix系统提供的用于执行与select()函数同等功能的函数,自认为poll和select大同小异,下面是这个函数的声明: #include < ...

  4. OpenShift实战(一):OpenShift高级安装

    1.1 服务器基本信息 本次安装采用一个master.5个node.3个etcd,node节点两块硬盘,60G磁盘用于docker storage,xxx改为自己的域名或主机名. 节点 功能 IP 内 ...

  5. SpringBoot项目如何进行打包部署

    springboot的打包方式有很多种.有打成war的,有打成jar的,也有直接提交到github,通过jekins进行打包部署的.这里主要介绍如何打成jar进行部署.不推荐用war,因为spring ...

  6. javascript 中的类型

    javascript 中的类型 js 是一门弱语言,各式各样的错误多种多样,特别是确定返回值有问题的时候,你会用什么来进行表示错误? 我一般有三个选择: null '' error {} 第一个选择 ...

  7. python全栈开发-常用模块的一些应用

    一.random模块详解 1.概述 首先我们看到这个单词是随机的意思,他在python中的主要用于一些随机数,或者需要写一些随机数的代码,下面我们就来整理他的一些用法 2.常用方法 1. random ...

  8. PHP常用函数集合

    PHP常用函数总结 数学函数 1.abs(): 求绝对值 $abs = abs(-4.2); //4.2 数字绝对值数字 2.ceil(): 进一法取整 echo ceil(9.999); // 10 ...

  9. 基于dns搭建eureka集群

    eureka集群方案: 1.通常我们部署的eureka节点多于两个,根据实际需求,只需要将相邻节点进行相互注册(eureka节点形成环状),就达到了高可用性集群,任何一个eureka节点挂掉不会受到影 ...

  10. WebBench的安装与使用

    webbench最多可以模拟3万个并发连接去测试网站的负载能力. 一.编译安装 1.上传压缩包到虚机里,rz webbench-1.5.tar.gz 2.解压 tar zxvf webbench-1. ...