噪声:误标、对同一数据点的标注不一致、数据点信息不准确......
噪声是针对整个输入空间的。
存在噪声的情况下,VC bound依旧有用:
存在噪声,就是f------>p(y|x),f是p的特殊情况:如p(0|x)=1,p(1|x)=0。
VC bound本身就不管f的。
其实,推VC bound的时候第3步使用的是不放回的霍夫丁不等式,不要求独立同分布。
参照口袋算法,可以表明存在噪声情况下,VC bound依旧有用。
错误/代价:分类常用0/1错误,回归常用均方误差。
false positive/false accept:标签为-1,输出为+1。
false negative/false reject:标签为+1,输出为-1。
------false是指输出与实际标签不一致,positive为+,negative为-。
 
根据实际应用,对上面2种错误的惩罚一般是不一样的。
但是,对于真正的错误err,用户难以量化惩罚比例,可由我们选择合理的或者有益于算法的,记为err帽,作为err的近似。
加权分类:
分类时进行错误衡量时,对false positive和false negative的惩罚不都是1。
如加权口袋算法,
0/1错误衡量保证了PA能够停止,那加权错误衡量如何保证加权PA能够停止呢?
可通过virtual examples copying转化为0/1错误衡量方式。
原始问题里D中每个样本点被访问的概率相等,virtual copy后D中标签值为-1的点被访问的概率变高,
但是PLA、PA都是要遍历一轮数据的,概率变化对算法影响不大。
 

机器学习基石:08 Noise and Error的更多相关文章

  1. 机器学习基石笔记:08 Noise and Error

    噪声:误标.对同一数据点的标注不一致.数据点信息不准确...... 噪声是针对整个输入空间的. 存在噪声的情况下,VC bound依旧有用: 存在噪声,就是f------>p(y|x),f是p的 ...

  2. 08 Noise and Error

    噪声:误标.对同一数据点的标注不一致.数据点信息不准确... 噪声是针对整个输入空间的. 存在噪声的情况下,VC bound依旧有用: 存在噪声,就是f--->p(y|x),f是p的特殊情况:如 ...

  3. 机器学习基石8-Noise and Error

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...

  4. 机器学习基石9-Linear Regression

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同 ...

  5. 关于Noise and Error主题的一些小知识

    (一)Noise会不会对VC bound产生影响? 此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> 答案是不会. 当信号中加入了Noise,其实对我们之前学过的内 ...

  6. 机器学习基石11-Linear Models for Classification

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们介绍了Logistic Regression问题,建立cross ...

  7. 机器学习基石10-Logistic Regression

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了Linear Regression线性回归,用均方误差来寻找最佳 ...

  8. 机器学习基石 5 Training versus Testing

    机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f ...

  9. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

随机推荐

  1. SQL中哪些情况会引起全表扫描

    1.模糊查询效率很低:原因:like本身效率就比较低,应该尽量避免查询条件使用like:对于like '%...%'(全模糊)这样的条件,是无法使用索引的,全表扫描自然效率很低:另外,由于匹配算法的关 ...

  2. python 信号处理

    linux开发中,通常会在进程中设置专门的信号处理方法,比如经常使用的CTRL+C,KILL等信号.如果你熟悉liunx编程,那么python等信号处理方法对你来说就很简单,下面的内容将主要介绍pyt ...

  3. 通过cmd命令行连接mysql数据库

    找到 mysqld.exe所在的路径 使用cd切换到msyqld.exe路径下 输入mysql连接命令,格式如下 Mysql  -P 端口号  -h  mysql主机名\ip -u root (用户) ...

  4. 实验三《Java面向对象程序设计》实验报告

    20162308 实验三<Java面向对象程序设计>实验报告 实验内容 XP基础 XP核心实践 IDEA工具学习 密码学算法基础 实验步骤 (一)Refactor/Reformat使用 p ...

  5. 201621123060 《Java程序设计》第六周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...

  6. C语言——第四次作业

    题目 题目一:计算分段函数 1.实验代码 #include <stdio.h> int main() { double x,y; scanf("%lf",&x) ...

  7. iOS Storyboard unwind segues使用小结

    使用storyboard开发的时候,经常会在一个scene上添加一个button,再拖拽这个button到某个想要关联的页面,最后选择push的方式跳转.这样scene_A和scene_B就有了一个& ...

  8. Microsoft Soft SQL Server 大数据----分区表性能测试

    分区表 MSSQL有一个大数据储存方案,可以提高效率那就是分区表. 使用起来跟普通表没有区别.至于具体原理自己度娘吧. 真正性能的提高,是依赖于硬件的加入.也是就说,当把一个表设置成分区表,每一个分区 ...

  9. js数组string对象api常用方法

    charAt() 方法可返回指定位置的字符. stringObject.charAt(index) indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. stringObject ...

  10. javascript 中的类型

    javascript 中的类型 js 是一门弱语言,各式各样的错误多种多样,特别是确定返回值有问题的时候,你会用什么来进行表示错误? 我一般有三个选择: null '' error {} 第一个选择 ...