Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8311   Accepted: 2677   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex. 
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars. 
Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input file describes the graph Alice has drawn. The first line of the input file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106 . Each of the following M lines contains two integers describing the corresponding arc of the graph. Graph may contain loops and parallel arcs.

Output

On the first line of the output file print W --- the minimal sum Bob must have to remove all arcs from the graph. On the second line print K --- the number of moves Bob needs to do it. After that print K lines that describe Bob's moves. Each line must first contain the number of the vertex and then '+' or '-' character, separated by one space. Character '+' means that Bob removes all arcs incoming into the specified vertex and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +

Source

Northeastern Europe 2003, Northern Subregion

题意from mhy12345:给一张有向图,现在要选择一些点,删掉图中的所有边。具体操作为:选择点 i,可
以选择删除从 i 出发的所有有向边或者进入 i 的所有有向边,分别有个代价 ini 和
outi,求最小的代价删掉所有边。并输出删除方案。


建图 S-- w+ -->in-->out-- w- -->T

显然要拆成入点和出点,对于一条边,出点或者入点的花费花一个就可以了
 
打印方案的话,从S做BFS,对于一条边一个顶点vis一个顶点没vis就是割集里的了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,M=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,u,v,s,t,w[N];
struct edge{
int v,c,f,ne;
}e[M<<];
int cnt,h[N];
inline void ins(int u,int v,int c){
cnt++;
e[cnt].v=v;e[cnt].c=c;e[cnt].f=;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].c=;e[cnt].f=;e[cnt].ne=h[v];h[v]=cnt;
}
int cur[N],d[N],vis[N];
int q[N],head,tail;
bool bfs(){
head=tail=;
memset(vis,,sizeof(vis));
d[s]=;vis[s]=;q[tail++]=s;
while(head!=tail){
int u=q[head++];
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]&&e[i].c>e[i].f){
vis[v]=;d[v]=d[u]+;
q[tail++]=v;
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int a){
if(u==t||a==) return a;
int flow=,f;
for(int &i=cur[u];i;i=e[i].ne){
int v=e[i].v;
if(d[v]==d[u]+&&(f=dfs(v,min(e[i].c-e[i].f,a)))>){
flow+=f;
e[i].f+=f;
e[((i-)^)+].f-=f;
a-=f;
if(a==) break;
}
}
if(a) d[u]=-;
return flow;
}
int dinic(){
int flow=;
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=h[i];
flow+=dfs(s,INF);
}
return flow;
} void bfsSol(){
head=tail=;
memset(vis,,sizeof(vis));
q[tail++]=s;vis[s]=;
while(head!=tail){
int u=q[head++];
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]&&e[i].c>e[i].f){
vis[v]=;
q[tail++]=v;
}
}
}
}
int cut[M];
void solve(){
int flow=dinic();
printf("%d\n",flow);
bfsSol();
int num=;
for(int i=;i<=n;i++){
if(!vis[i]) num++;
if(vis[i+n]) num++;
}
printf("%d\n",num);
for(int i=;i<=n;i++){
if(!vis[i]) printf("%d +\n",i);
if(vis[i+n]) printf("%d -\n",i);
}
}
int main(){
//freopen("in.txt","r",stdin);
n=read();m=read();s=;t=n+n+;
for(int i=;i<=n;i++) w[i]=read(),ins(s,i,w[i]);
for(int i=;i<=n;i++) w[i+n]=read(),ins(i+n,t,w[i+n]);
for(int i=;i<=m;i++){
u=read();v=read();
ins(v,u+n,INF);
}
solve();
}
 
 
 

POJ 2125 Destroying The Graph [最小割 打印方案]的更多相关文章

  1. poj 2125 Destroying The Graph 最小割+方案输出

    构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该 ...

  2. POJ - 2125 Destroying The Graph (最小点权覆盖)

    题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...

  3. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  4. poj 2125 Destroying The Graph (最小点权覆盖)

    Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS   Memory Limit: 65536K       ...

  5. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  6. 图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph

    Destroying The Graph   Description Alice and Bob play the following game. First, Alice draws some di ...

  7. POJ 2125 Destroying The Graph 二分图 最小点权覆盖

    POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...

  8. ●POJ 2125 Destroying The Graph

    题链: http://poj.org/problem?id=2125 题解: 最小割 + 输出割方案.建图:拆点,每个题拆为 i 和 i'分别表示其的入点和出点建立超源 S和超汇 T.S -> ...

  9. poj 3469 Dual Core CPU——最小割

    题目:http://poj.org/problem?id=3469 最小割裸题. 那个限制就是在 i.j 之间连双向边. 根据本题能引出网络流中二元关系的种种. 别忘了写 if ( x==n+1 ) ...

随机推荐

  1. enum与typedef enum

    enum与typedef enum的用法 在程序中,可能需要为某些整数定义一个别名,我们可以利用预处理指令#define来完成这项工作,您的代码可能是: #define MON  1#define T ...

  2. java线程间通信:一个小Demo完全搞懂

    版权声明:本文出自汪磊的博客,转载请务必注明出处. Java线程系列文章只是自己知识的总结梳理,都是最基础的玩意,已经掌握熟练的可以绕过. 一.从一个小Demo说起 上篇我们聊到了Java多线程的同步 ...

  3. Django App(四) Submit a form

    经过前面的努力,到这里我们已经基本完成了,从服务器到浏览器的数据下发,还没有解决从浏览器到服务器的数据上传,这一节将创建一个Form获取从浏览器提交的数据 1.新建Form 接着前面建的项目,网上调查 ...

  4. word文档自动生成方法

    创建word文档需要几个接口类,常用application,document,documents,selection等.但word的功能复杂,要认识到每一个类的功能是不可能的.常用的方法是在word的 ...

  5. html日历(2)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. 【django基础补充之URL,视图,模版】

    一.url路由配置 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于这个URL调用这段代 ...

  7. 手把手教你搭建 vue 环境

    第一步 node环境安装 1.1 如果本机没有安装node运行环境,请下载node 安装包进行安装1.2 如果本机已经安装node的运行换,请更新至最新的node 版本下载地址:https://nod ...

  8. 图文教程:在Mac上搭建Titanium的iOS开发环境

    http://mobile.51cto.com/web-317170_all.htm 跨平台开发工具Titanium的兴起之路:HTML 5是最大威胁 比较Titanium和PhoneGap两大iOS ...

  9. springmvc +mybatis 配置多数据源

    1.数据源配置: jdbc_multiple.properties: # MySQL #======================================================== ...

  10. Java接口和抽象类的理解

    接口和抽象类的相同之处就是 都会有抽象方法 抽象方法就是一个没有方法体 等待继承的子类完成的方法 然而接口比较严格 它的方法必须是抽象方法且是公开的 抽象类 可以有自己的属性 和 实体方法 首相用面向 ...