机器学习类别不平衡处理之欠采样(undersampling)
类别不平衡就是指分类任务中不同类别的训练样例数目差别很大的情况
常用的做法有三种,分别是1.欠采样, 2.过采样, 3.阈值移动
由于这几天做的project的target为正值的概率不到4%,且数据量足够大,所以我采用了欠采样:
欠采样,即去除一些反例使得正、反例数目接近,然后再进行学习,基本的算法如下:
def undersampling(train, desired_apriori):
# Get the indices per target value
idx_0 = train[train.target == 0].index
idx_1 = train[train.target == 1].index
# Get original number of records per target value
nb_0 = len(train.loc[idx_0])
nb_1 = len(train.loc[idx_1])
# Calculate the undersampling rate and resulting number of records with target=0
undersampling_rate = ((1-desired_apriori)*nb_1)/(nb_0*desired_apriori)
undersampled_nb_0 = int(undersampling_rate*nb_0)
print('Rate to undersample records with target=0: {}'.format(undersampling_rate))
print('Number of records with target=0 after undersampling: {}'.format(undersampled_nb_0))
# Randomly select records with target=0 to get at the desired a priori
undersampled_idx = shuffle(idx_0, n_samples=undersampled_nb_0)
# Construct list with remaining indices
idx_list = list(undersampled_idx) + list(idx_1)
# Return undersample data frame
train = train.loc[idx_list].reset_index(drop=True)
return train
因为对应具体的project,所以里面欠采样的为反例,如果要使用的话需要做一些改动。
欠采样法若随机丢弃反例,可能会丢失一些重要信息。为此,周志华实验室提出了欠采样的算法EasyEnsemble:利用集成学习机制,将反例划分为若干个集合供不同学习器使用,这样对每个学习器来看都进行了欠采样,但在全局来看却不会丢失重要信息。其实这个方法可以再基本欠采样方法上进行些许改动即可:
def easyensemble(df, desired_apriori, n_subsets=10):
train_resample = []
for _ in range(n_subsets):
sel_train = undersampling(df, desired_apriori)
train_resample.append(sel_train)
return train_resample
仔细来看,下图是原始论文Exploratory Undersampling for Class-Imbalance Learning里的算法介绍:
PS: 对于类别不平衡的时候采用CV进行交叉验证时,由于分类问题在目标分布上表现出很大的不平衡性。如果用sklearn
库中的函数进行交叉验证的话,建议采用如StratifiedKFold
和 StratifiedShuffleSplit
中实现的分层抽样方法,确保相对的类别概率在每个训练和验证折叠中大致保留。
Reference:
- 《机器学习》. 周志华
- https://www.kaggle.com/bertcarremans/data-preparation-exploration
- http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.ensemble.BalanceCascade.html#imblearn.ensemble.BalanceCascade
机器学习类别不平衡处理之欠采样(undersampling)的更多相关文章
- 欠采样(undersampling)和过采样(oversampling)会对模型带来怎样的影响
项目中出现了二分类数据不平横问题,研究总结下对于类别不平横问题的处理经验: 为什么类别不平横会影响模型的输出? 许多模型的输出类别是基于阈值的,例如逻辑回归中小于0.5的为反例,大于则为正例.在数据不 ...
- 机器学习 —— 类不平衡问题与SMOTE过采样算法
在前段时间做本科毕业设计的时候,遇到了各个类别的样本量分布不均的问题——某些类别的样本数量极多,而有些类别的样本数量极少,也就是所谓的类不平衡(class-imbalance)问题. 本篇简述了以下内 ...
- 机器学习之类别不平衡问题 (2) —— ROC和PR曲线
机器学习之类别不平衡问题 (1) -- 各种评估指标 机器学习之类别不平衡问题 (2) -- ROC和PR曲线 完整代码 ROC曲线和PR(Precision - Recall)曲线皆为类别不平衡问题 ...
- 如何解决数据类别不平衡问题(Data with Imbalanced Class)
类别不平衡问题是指:在分类任务中,数据集中来自不同类别的样本数目相差悬殊. 类别不平衡问题会造成这样的后果:在数据分布不平衡时,其往往会导致分类器的输出倾向于在数据集中占多数的类别:输出多数类会带来更 ...
- 类别不平衡问题之SMOTE算法(Python imblearn极简实现)
类别不平衡问题类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题.例如逻辑回归即不适合处理类别不平衡问题,例如逻辑回归在欺诈检测问题 ...
- 类别不平衡问题和Softmax回归
目录 类别不平衡(class-imbalance) Softmax回归模型 类别不平衡(class-imbalance) 当不同类别的训练样本数目差别很大,则会对学习过程造成困扰.如有998个反例,但 ...
- 机器学习:不平衡信息有序平均加权最近邻算法IFROWANN
一 背景介绍 不平衡信息,特点是少数信息更珍贵,多数信息没有代表性.所以一般的分类算法会被多数信息影响,而忽略少数信息的重要性. 解决策略: 1.数据级别 (1)上采样:增加稀有类成本数 (2)下采样 ...
- Focal Loss(RetinaNet)笔记 一种减小类别不平衡影响的方法
Paper: https://arxiv.org/abs/1708.02002 还参考了:https://www.jianshu.com/p/8e501a159b28 其中p是预测属于某类的概率.
- kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了
先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...
随机推荐
- JQuery常用功能的性能优化
使用最佳选择器 通常比较常用的选择器有以下几个: 1.ID选择器 $("#id") 2.标签选择器 $("td") 3.类选择器 $(".target ...
- Java 理论与实践: 并发集合类
Java 理论与实践: 并发集合类 DougLea的 util.concurrent 包除了包含许多其他有用的并发构造块之外,还包含了一些主要集合类型 List 和 Map 的高性能的.线程安全的实现 ...
- 电商网站开发记录(三) Spring的引入,以及配置详解
1.web.xml配置注解<?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi=& ...
- Python并发编程的几篇文章
Python几种并发实现方案的性能比较 http://www.elias.cn/Python/PyConcurrency?from=Develop.PyConcurrency python并发编程 h ...
- linux服务器上部署项目,同时运行两个或多个tomcat
在阿里云服务器上部署项目的时候,想使用阿里云提供的负载均衡服务并创建两个监听(如图), 但需要一台服务器提供两个端口,于是就请教前辈并查询资料,得知: 一台服务器提供两个端口,有两种方式: 1.一个t ...
- Java并发-对象共享
我们不仅希望防止某个线程正在使用对象状态而其他的线程正在修改该状态,而且希望当一个线程修改了对象状态后,其他的线程能够看到发生的状态变化. 可见性:当读操作和写操作在不同的线程中进行时,他们的动作是共 ...
- Oracle数据库表分区
一.Oracle数据库表分区概念和理解 1.1.已经存在的表没有方法可以直接转化为分区表. 1.2.不在分区字段上建立分区索引,在别的字段上建立索引相当于全局索引.效率 ...
- unity3d入门教程
2010年Unity3D游戏引擎进入人们的视野,它操作简单.易学.灵活,逐步被各类平台厂商运用到新作品中,产生了全球游戏开发商.个人使用Unity3D的热潮.而在国内,根据权威部门统计,50%的Uni ...
- sqlserver聚合索引(clustered index) / 非聚合索引(nonclustered index)的理解
1. 什么是聚合索引(clustered index) / 什么是非聚合索引(nonclustered index)? 可以把索引理解为一种特殊的目录.微软的SQL SERVER提供了两种索引:聚集索 ...
- subline常用快捷键
一次创建5个class为main的div : div.main*5 +TAB 快速生成HTML结构: ! + TAB 使盒子内的文本水平垂直方向对齐: height:value; line-h ...