二项分布(Binomial Distribution)
对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布
- 两分类变量并非一定会服从二项分布
- 模拟伯努利试验中n次独立的重复,每次试验成功的概率为pi

特征值
- 均值(数学期望)和方差:
  - 不同的值,二项式分布有着不同的形态和偏度值
  - pi值越大,呈负偏度;pi值越小,呈正偏度
  - 当 pi = 0.5时,分布是对称的
  - 当 n * pi 与 n * (1-pi) >= 5 时,样本比例p的抽样分布趋向于正态分布
- 当 n 较大,pi不太极端时,可以采用正态近似方法计算概率分布规律

应用

- 博彩行业的规则设定
- 正常值范围的设定(例:医疗行业)

# 对二项分布概念的理解及计算

 # 对二项分布概念的理解及计算

 from scipy.stats import binom

 pi = .3; n = 10
k = 2; m = 8 # 求成功次数为i的概率
pk = 0
for i in range(n):
p = binom( n, pi ).pmf( i )
if i <= k:
pk += p
print( 'P(x = {0:d}) = {1:.4f}'.format( i , p )) # 求成功小于k次的概率
print('-'*20)
p = binom( n, pi ).cdf( k )
print( 'P(x <= {0:d}) = {1:.4f}'.format( k , p ))
print( '比较累加值:', pk) # 求成功大于k次,小于m次的概率
print('-'*20)
p = binom( n, pi ).cdf( m ) - binom( n, pi ).cdf( k )
print( 'P({0:d} < x <= {1:d}) = {2:.4f}'.format( k , m, p ))

运行结果:

# 比较:p对结果的影响

 import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt num_trials = 60
x = np.arange(num_trials) plt.plot(x, binom(num_trials, 0.2).pmf(x), 'o-', label='p=0.2')
plt.plot(x, binom(num_trials, 0.5).pmf(x), 'o-', label='p=0.5')
plt.plot(x, binom(num_trials, 0.7).pmf(x), 'o-', label='p=0.7')
plt.legend()
plt.title( '二项分布:p对结果的影响' )
plt.show()
print('当p不同时,成功m次的能性的最大值都出现在均值处,对应概率为n*p')

结果:

# 比较:n对结果的影响

 import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt n1 = 10
n2 = 15
n3 = 20
p = 0.5
x = np.arange( max([n1,n2,n3])+1 ) plt.plot( x, binom.pmf( x, p = 0.5, n = n1), 'o-', label='n=10')
plt.plot( x, binom.pmf( x, p = 0.5, n = n2), 'o-', label='n=15')
plt.plot( x, binom.pmf( x, p = 0.5, n = n3), 'o-', label='n=20')
plt.legend()
plt.title( '二项分布:n对结果的影响' )
plt.show()
print('当N不同时,成功m次的可能性的最大值都出现在均值处,对应概率为n*p。')

结果:

用Python学分析 - 二项分布的更多相关文章

  1. 用Python学分析 - 单因素方差分析

    单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...

  2. 用Python学分析:集中与分散

    散点图进阶,结合箱体图与直方图对数据形成全面的认识 描述数据集中趋势的分析量: 均值 - 全部数据的算术平均值 众数 - 一组数据中出现次数最多的变量值 中位数 - 一组数据经过顺序排列后处于中间位置 ...

  3. 用Python学分析 - t分布

    1. t分布形状类似于标准正态分布2.  t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平3.  对于大型样本,t-值与z-值之间的差别很小 作用- t分布纠正了未知的真实标 ...

  4. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  5. 用Python学分析 - 散点图

    # 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...

  6. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  7. 《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

  8. Python学到什么程度就可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...

  9. Python学到什么程度才可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问"Python要学到什么程度才能出去找工作",对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来 ...

随机推荐

  1. Day6_正则表达式

    用作匹配数据的方法: print(re.findall('\w','yangshuai 123 asd \n \t')) #w:匹配字母数字下划线 print(re.findall('\W','yan ...

  2. SQL Server 远程更新目标表数据

    分享一个远程更新目标库数据的存储过程,适用于更新列名一致,主键为Int类型,可远程链接的数据库. ** 温馨提示:如需转载本文,请注明内容出处.** 本文连接:http://www.cnblogs.c ...

  3. sharesdk for android集成调试的几个问题

    1.一定要下载最新版,这个东西目前版本升级很频繁,证明产品本身还不稳定,最新版bug会少一点 2.下载最新版SDK的时候,跟随下载最新Sample,官网文档的示例代码及时性很差. 3.调试的几个Key ...

  4. android点击返回键,如何做到不destory当前activity,只是stop。重新返回该activity的 时候可以直接使用,不需要创建新的activity实例

    问题描述,如题目: android点击返回键,顺序执行 pause,stop,destory. 以至于想重新进入这个activity的时候还要重新执行onCreate()方法,那么如何解决不再重新执行 ...

  5. Apache Flink 流处理实例

    维基百科在 IRC 频道上记录 Wiki 被修改的日志,我们可以通过监听这个 IRC 频道,来实时监控给定时间窗口内的修改事件.Apache Flink 作为流计算引擎,非常适合处理流数据,并且,类似 ...

  6. 如何使用Sencha touch 构建基于Cordova的安卓项目

     项目构建篇 1.生成sencha touch 项目 新建目录,在命令行进入该目录,sencha -sdk sdk-path generate app appName appPath 2.命令行中进入 ...

  7. First Scala

    注意的两点: 1. Class or Objcect 在Scala把类和对象明确的分开了. Class相当于模板:Object是Class的实现. 2. main 要测试代码必须使用main def ...

  8. Web移动端页面 --响应式和动态REM

    响应式 什么是响应式页面呢? 顾名思义响应式页面就是能做出响应的页面,它的页面效果不是定死的,会随着用户的改变而改变. 如何着手响应式有以下几个思考的方向 找一份设计图 使用Media Query 隐 ...

  9. 自定义完美的ViewPager 真正无限循环的轮播图

    网上80%的思路关于Android轮播图无限循环都是不正确的,不是真正意义上的无限循环, 其思路大多是将ViewPager的getCount方法返回值设置为Integer.MAX_VALUE, 然后呢 ...

  10. 洛谷 P1430 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...