二项分布(Binomial Distribution)
对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布
- 两分类变量并非一定会服从二项分布
- 模拟伯努利试验中n次独立的重复,每次试验成功的概率为pi

特征值
- 均值(数学期望)和方差:
  - 不同的值,二项式分布有着不同的形态和偏度值
  - pi值越大,呈负偏度;pi值越小,呈正偏度
  - 当 pi = 0.5时,分布是对称的
  - 当 n * pi 与 n * (1-pi) >= 5 时,样本比例p的抽样分布趋向于正态分布
- 当 n 较大,pi不太极端时,可以采用正态近似方法计算概率分布规律

应用

- 博彩行业的规则设定
- 正常值范围的设定(例:医疗行业)

# 对二项分布概念的理解及计算

 # 对二项分布概念的理解及计算

 from scipy.stats import binom

 pi = .3; n = 10
k = 2; m = 8 # 求成功次数为i的概率
pk = 0
for i in range(n):
p = binom( n, pi ).pmf( i )
if i <= k:
pk += p
print( 'P(x = {0:d}) = {1:.4f}'.format( i , p )) # 求成功小于k次的概率
print('-'*20)
p = binom( n, pi ).cdf( k )
print( 'P(x <= {0:d}) = {1:.4f}'.format( k , p ))
print( '比较累加值:', pk) # 求成功大于k次,小于m次的概率
print('-'*20)
p = binom( n, pi ).cdf( m ) - binom( n, pi ).cdf( k )
print( 'P({0:d} < x <= {1:d}) = {2:.4f}'.format( k , m, p ))

运行结果:

# 比较:p对结果的影响

 import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt num_trials = 60
x = np.arange(num_trials) plt.plot(x, binom(num_trials, 0.2).pmf(x), 'o-', label='p=0.2')
plt.plot(x, binom(num_trials, 0.5).pmf(x), 'o-', label='p=0.5')
plt.plot(x, binom(num_trials, 0.7).pmf(x), 'o-', label='p=0.7')
plt.legend()
plt.title( '二项分布:p对结果的影响' )
plt.show()
print('当p不同时,成功m次的能性的最大值都出现在均值处,对应概率为n*p')

结果:

# 比较:n对结果的影响

 import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt n1 = 10
n2 = 15
n3 = 20
p = 0.5
x = np.arange( max([n1,n2,n3])+1 ) plt.plot( x, binom.pmf( x, p = 0.5, n = n1), 'o-', label='n=10')
plt.plot( x, binom.pmf( x, p = 0.5, n = n2), 'o-', label='n=15')
plt.plot( x, binom.pmf( x, p = 0.5, n = n3), 'o-', label='n=20')
plt.legend()
plt.title( '二项分布:n对结果的影响' )
plt.show()
print('当N不同时,成功m次的可能性的最大值都出现在均值处,对应概率为n*p。')

结果:

用Python学分析 - 二项分布的更多相关文章

  1. 用Python学分析 - 单因素方差分析

    单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...

  2. 用Python学分析:集中与分散

    散点图进阶,结合箱体图与直方图对数据形成全面的认识 描述数据集中趋势的分析量: 均值 - 全部数据的算术平均值 众数 - 一组数据中出现次数最多的变量值 中位数 - 一组数据经过顺序排列后处于中间位置 ...

  3. 用Python学分析 - t分布

    1. t分布形状类似于标准正态分布2.  t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平3.  对于大型样本,t-值与z-值之间的差别很小 作用- t分布纠正了未知的真实标 ...

  4. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  5. 用Python学分析 - 散点图

    # 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...

  6. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  7. 《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

  8. Python学到什么程度就可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...

  9. Python学到什么程度才可以去找工作?掌握这4点足够了!

    大家在学习Python的时候,有人会问"Python要学到什么程度才能出去找工作",对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来 ...

随机推荐

  1. Day18 Django的深入使用

    在向某一个数据库中插入表的时候,应该在项目下面的models里边写入: class book(models,Model): #book代指的是表名 id=models.AutoField(primar ...

  2. POP3和imap

    POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,是TCP/IP协议族中的一员(默认端口是110).本协议主要用于支持使用客户端远程管理在服务器上的电子邮 ...

  3. geth常用指令

    ubuntu下载: https://github.com/ethereum/go-ethereum/wiki/Installation-Instructions-for-Ubuntu sudo apt ...

  4. SignUtil

    最近接的新项目 加密比较多  我就记录下. SignUtil是jnewsdk-mer-1.0.0.jar  com.jnewsdk.util中的一个工具类.由于我没有百度到对应的信息.所以我只能看源码 ...

  5. GitHub awesome Resource

    各种Awesome技术资源的资源聚合: https://github.com/sindresorhus/awesome Contents Platforms Programming Languages ...

  6. jieba库词频统计练习

    在sypder上运行jieba库的代码: import matplotlib.pyplot as pltfracs = [2,2,1,1,1]labels = 'houqin', 'jiemian', ...

  7. bugku login2 writeup 不使用vps的方法

    0x00前言 这个题是sql注入与命令执行相结合的一个题,思路有两个: 一.:sql注入登录web系统,命令执行反弹公网IP监听端口(需要vps),此种方法详见链接:http://www.bugku. ...

  8. 0516js综合练习

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  9. 什么是分布式锁及正确使用redis实现分布式锁

    分布式锁 分布式锁其实可以理解为:控制分布式系统有序的去对共享资源进行操作,通过互斥来保持一致性. 举个不太恰当的例子:假设共享的资源就是一个房子,里面有各种书,分布式系统就是要进屋看书的人,分布式锁 ...

  10. angular访问后台服务及监控会话超时的封装

    angular访问后台服务及监控会话超时的封装 angular本身自带访问组件http和httpclient,组件本身都是异步模式访问.本文只列举了对http组件的封装同时也一同处理会话超时监控. 获 ...