1、标准正交矩阵

假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式:

若Q为方阵,由上面的式子则有

我们举例说明上述概念:

2、标准正交矩阵的好处

    上面我们介绍了标准正交矩阵,那么标准正交矩阵的用处在哪?下面以两方面来说明标准正交矩阵的用处:


求解Ax=b

    在前面文章《正交投影》中,有下式:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:

可以发现,求x时不需要矩阵Q的逆,只需要知道转置即可,这样简化了计算。

求解投影矩阵

    在前面文章《正交投影》中,投影矩阵的通式可以表示为:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:

这样就将投影矩阵简单化了。

3、Gram-Schmidt正交化

    任何复杂问题的求解都可以从简单的问题出发。聪明的数学家不会羞于考虑小问题,因为当最简单的情况弄得明明白白时,一般的形式就容易理解了。并且,简单的情况不仅帮我们发现一般的公式,而且还提供了一种便利的核查方法,看看我们是否犯下了愚蠢的错误。下面我们就从简单的二维情况讨论:

二维情况

    假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵:
    假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B。如下面的二维情况所示,B的方向与A成90度。图中还表明,B可以表示为b向量与b向量在a上的投影的误差向量。由《正交投影》中的结论可知,有如下关系成立:

三维情况

     假设原来的矩阵为[a,b,c],a,b,c为线性无关的二维向量,正交化后的矩阵为Q=[A,B,C],我们可以令A=a,则可以根据二维情况得到如下猜想:

上式显然满足AB=0,AC=0,BC=0。

下面我们用实例说明正交化的过程:
假设矩阵为[a,b]

则由二维情况的结论可知:

把具体数值代入得:

经过归一化得:

Q即是我们经过正交化后的正交矩阵。

原文:http://blog.csdn.net/tengweitw/article/details/41775545

作者:nineheadedbird

【线性代数】标准正交矩阵与Gram-Schmidt正交化的更多相关文章

  1. 线性代数之——正交矩阵和 Gram-Schmidt 正交化

    这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向 ...

  2. 施密特正交化 GramSchmidt

    施密特正交化 GramSchmidt 施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特 ...

  3. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

  4. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  5. Deep Learning(花书)教材笔记-Math and Machine Learning Basics(线性代数拾遗)

    I. Linear Algebra 1. 基础概念回顾 scalar: 标量 vector: 矢量,an array of numbers. matrix: 矩阵, 2-D array of numb ...

  6. 浅谈压缩感知(十九):MP、OMP与施密特正交化

    关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...

  7. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  8. PCA主成份分析学习记要

    前言 主成份分析,简写为PCA(Principle Component Analysis).用于提取矩阵中的最主要成分,剔除冗余数据,同时降低数据纬度.现实世界中的数据可能是多种因数叠加的结果,如果这 ...

  9. 矩阵分解---QR正交分解,LU分解

    相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...

随机推荐

  1. activiti processEngineLifecycleListener使用

    1.1.1. 前言 实际开发中,有需求如下: 第一:项目启动部署的时候,我们需要监控activiti 工作流引擎是否真正的已经实例化启动了,这里说的是工作流引擎的启动,不是流程实例的启动,对此要特别说 ...

  2. Gazebo機器人仿真學習探索筆記(四)模型編輯

    模型編輯主要是自定義編輯物體模型構建環境,也可以將多種模型組合爲新模型等,支持外部模型導入, 需要注意的導入模型格式有相應要求,否在無法導入成功, COLLADA (dae), STereoLitho ...

  3. Matlab:如何查找给定目录下的文件

    我们有很多目录,每个目录下都有些有用的文件,比如图像文件,如何自动的扫描这些文件呢? 可以使用dir函数来完成这个任务. 比如假设给定目录 baseDir,它是一个字符串,包含的是某个目录,例如'./ ...

  4. 3.Lucene3.x API分析,Director 索引操作目录,Document,分词器

     1  Lucene卡发包结构分析 包名 功能 org.apache.lucene.analysis Analysis提供自带的各种Analyzer org.apache.lucene.colla ...

  5. ECMAScript 6之Set和Map数据结构

    Set 基本用法 ES6提供了新的数据结构Set.它类似于数组,但是成员的值都是唯一的,没有重复的值. Set本身是一个构造函数,用来生成Set数据结构. var s = new Set(); [2, ...

  6. 【原创】Eclipse vs. IDEA快捷键对比大全

    花了一天时间熟悉IDEA的各种操作,将各种快捷键都试了一下,感觉很是不错!于是就整理了一下我经常用的一些Eclipse快捷键与IDEA的对比,方便像我一样使用Eclipse多年但想尝试些改变的同学们. ...

  7. hashmap简单实例(个人使用经验)

    一.HashMap<int,String>是错误的:因为int是基本类型,而key和value要求是对象,所以要用Integer而不是int.HashMap<String,Objec ...

  8. Win7/Win8/Win10下安装Ubuntu14.04双系统 以及常见问题

    整理自网络. 1. 制作镜像 将ubantu镜像刻录到优盘(我使用UltraISO刻录,镜像下载地址:链接: http://pan.baidu.com/s/1bndbcGv 密码: qsmb) 2. ...

  9. Android学习之AppWidget高级效果

    接着AppWidget基础学习,今天是一个"进阶版"的小例子,用来检验一下自己的学习效果.于是就做了一个掷骰子的Widget. 方便大家观看,先截图如下: 需要注意的是在drawa ...

  10. RH阴性血妇女怀孕注意事项

     RH阴性血的妇女怀孕注意事项,本文主要讲解RH阴性血抗体效价检测. 第一.孕前准备:Rh阴性的妇女怀孕前,需要到血液中心或指定医院作ABO和Rh血型鉴定,并且做一次孕前血液免疫学产前检查(血型抗体检 ...