Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.Arthur and Caroll really enjoyed playing this simple game until theyrecently learned an easy way to always be able to find the best move:Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).If the xor-sum is 0, too bad, you will lose.Otherwise, move such that the xor-sum becomes 0. This is always possible.It is quite easy to convince oneself that this works. Consider these facts:The player that takes the last bead wins.After the winning player's last move the xor-sum will be 0.The xor-sum will change after every move.Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S = f2, 5g each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?your job is to write a program that determines if a position of S-Nim is a losing or a winning position.

A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Arthur and his sister Caroll 玩nim游戏玩腻了(因为他们都知道了如何计算必胜策略),所以Arthur把这个游戏改了一下规则,Arthur定义了一个有限集合S,每次从一堆石子中取的石子数目必须在S中。现在,Arthur想知道先手是否有必胜策略。有多组测试数据。

Input
Input consists of a number of test cases.

For each test case: The first line contains a number k (0 < k ≤ 100) describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S.

The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate.

The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps.

The last test case is followed by a 0 on a line of its own.
每行输入首先给出一个数k,代表集合S的大小,接下来紧跟着k个数,表示集合S里的数。接下来一行数为m代表有m个游戏,后面m行每行第一个数字为n代表有n堆石子,后面紧跟着n个数代表每堆石子的个数。多组数据,做到0结束

Output
For each position: If the described position is a winning position print a 'W'.
If the described position is a losing position print an 'L'.
Print a newline after each test case.
对于每组数据,我们要输出n个字母,第i个字母为“W”代表第i个游戏先手必胜,“L”代表第i个游戏先手必败,做完一组数据后换行。

Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output
LWW
WWL

Nim游戏的一种,只是有集合的限制。我们开始预处理出集合对SG值的影响,然后普通Nim即可

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e2,M=1e5;
int s[N+10],SG[M+10],k,vis[N+10]; void prepare()
{
memset(SG,0,sizeof(SG));
for(int i=1;i<=M;++i)
{
memset(vis,0,sizeof(vis));
for(int j=1;j<=k;++j)
{
if(i<s[j]) break;
vis[SG[i-s[j]]]=1;
}
for(int j=0;j<=N;++j)
if(!vis[j])
{
SG[i]=j;
break;
}
}
} int main()
{
while(k=read(),k)
{
for(int i=1;i<=k;++i)
s[i]=read();
sort(s+1,s+1+k);
prepare();
int n=read();
for(int i=1;i<=n;++i)
{
int m=read(),ans=0;
for(int i=1;i<=m;++i)
ans^=SG[read()];
cout<<(!ans?"L":"W");
}
cout<<endl;
}
return 0;
}

  

POJ2960 S-Nim 【博弈论】的更多相关文章

  1. (转载)Nim博弈论

    最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...

  2. 【Poj2960】S-Nim & 博弈论

    Position: http://poj.org/problem?id=2960 List Poj2960 S-Nim List Description Knowledge Solution Noti ...

  3. hdu 3032 Nim or not Nim? 博弈论

     这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...

  4. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

  5. zoj 3591 Nim 博弈论

    思路:先生成序列再求异或,最多的可能为n*(n+1)/2: 在去掉其中必败的序列,也就是a[i]=a[j]之间的序列. 代码如下: #include<iostream> #include& ...

  6. poj 2068 Nim 博弈论

    思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...

  7. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  8. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  9. 【BZOJ】4147: [AMPPZ2014]Euclidean Nim

    [算法]博弈论+数论 [题意]给定n个石子,两人轮流操作,规则如下: 轮到先手操作时:若石子数<p添加p个石子,否则拿走p的倍数个石子.记为属性p. 轮到后手操作时:若石子数<q添加q个石 ...

随机推荐

  1. Identity4实现服务端+api资源控制+客户端请求

    准备写一些关于Identity4相关的东西,最近也比较对这方面感兴趣.所有做个开篇笔记记录一下,以便督促自己下一个技术方案方向 已经写好的入门级别Identity4的服务+api资源访问控制和简单的客 ...

  2. Eclipse目录实解

    从左1图中可以看到,其中的src/main/java存放java文件,src/main/resources存放项目用到的资源(js,css,图片,文件等).下面的两个文件夹是用来存放测试文件和资源的( ...

  3. Flask实战第3天:url_for使用

    我们之前是通过url来找到对应的视图函数 /     =>    hello_world 那么url_for则是通过视图函数找到url hello world  =>  / 演示如下 #c ...

  4. Yii2设计模式——设计模式简介

    我们首先来思考一个问题:作为工程师,我们的价值是什么? 笔者认为是--解决用户问题. 我们的任何知识和技能,如果不能解决特定的问题,那么就是无用的屠龙之术:我们的任何经验,如果不能对解决新的问题有用, ...

  5. Django学习之八:forms组件【对form舒心了】

    目录 Django forms组件 bound and unbound form instance forms渲染有关 隐藏一个字段,不渲染它 form 校验 form类 ModelForm 利用Mo ...

  6. MongoDB学习(操作集合中的文档)

    文档概念 文档的数据结构和JSON基本一样. 所有存储在集合中的数据都是BSON格式. BSON是一种类json的一种二进制形式的存储格式,简称Binary JSON. 插入文档 insert()方法 ...

  7. Debain/Ubuntu/Deepin 下使用 ss

    如果你有一台 ss 的服务器,在 Debian Like 的环境下要如何***呢? 安装 ss 客户端 如果还没安装 pip 就得先安装 sudo apt-get install python-pip ...

  8. Visual Studio插件开发基础

    Visual Studio插件主要有两种:Add-in 和 VSX(Visual Studio eXtensibility) 两者区别可参考这篇文章:Visual Studio Extensions ...

  9. Swift中 删除Array的元素对象

    Swift中Array的删除对象 在Swift中数组Array没有removeObject的方法 1.找到下标 let model_index = selectedArray.index(where: ...

  10. Web框架本质及第一个Django实例

    Web框架本质 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端. 这样我们就可以自己实现Web框架了. 半成品自定义web框架 impor ...