POJ2960 S-Nim 【博弈论】
Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.Arthur and Caroll really enjoyed playing this simple game until theyrecently learned an easy way to always be able to find the best move:Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).If the xor-sum is 0, too bad, you will lose.Otherwise, move such that the xor-sum becomes 0. This is always possible.It is quite easy to convince oneself that this works. Consider these facts:The player that takes the last bead wins.After the winning player's last move the xor-sum will be 0.The xor-sum will change after every move.Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S = f2, 5g each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?your job is to write a program that determines if a position of S-Nim is a losing or a winning position.
A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Arthur and his sister Caroll 玩nim游戏玩腻了(因为他们都知道了如何计算必胜策略),所以Arthur把这个游戏改了一下规则,Arthur定义了一个有限集合S,每次从一堆石子中取的石子数目必须在S中。现在,Arthur想知道先手是否有必胜策略。有多组测试数据。
Input
Input consists of a number of test cases.For each test case: The first line contains a number k (0 < k ≤ 100) describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S.
The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate.
The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps.
The last test case is followed by a 0 on a line of its own.
每行输入首先给出一个数k,代表集合S的大小,接下来紧跟着k个数,表示集合S里的数。接下来一行数为m代表有m个游戏,后面m行每行第一个数字为n代表有n堆石子,后面紧跟着n个数代表每堆石子的个数。多组数据,做到0结束Output
For each position: If the described position is a winning position print a 'W'.
If the described position is a losing position print an 'L'.
Print a newline after each test case.
对于每组数据,我们要输出n个字母,第i个字母为“W”代表第i个游戏先手必胜,“L”代表第i个游戏先手必败,做完一组数据后换行。Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0Sample Output
LWW
WWL
Nim游戏的一种,只是有集合的限制。我们开始预处理出集合对SG值的影响,然后普通Nim即可
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e2,M=1e5;
int s[N+10],SG[M+10],k,vis[N+10]; void prepare()
{
memset(SG,0,sizeof(SG));
for(int i=1;i<=M;++i)
{
memset(vis,0,sizeof(vis));
for(int j=1;j<=k;++j)
{
if(i<s[j]) break;
vis[SG[i-s[j]]]=1;
}
for(int j=0;j<=N;++j)
if(!vis[j])
{
SG[i]=j;
break;
}
}
} int main()
{
while(k=read(),k)
{
for(int i=1;i<=k;++i)
s[i]=read();
sort(s+1,s+1+k);
prepare();
int n=read();
for(int i=1;i<=n;++i)
{
int m=read(),ans=0;
for(int i=1;i<=m;++i)
ans^=SG[read()];
cout<<(!ans?"L":"W");
}
cout<<endl;
}
return 0;
}
POJ2960 S-Nim 【博弈论】的更多相关文章
- (转载)Nim博弈论
最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...
- 【Poj2960】S-Nim & 博弈论
Position: http://poj.org/problem?id=2960 List Poj2960 S-Nim List Description Knowledge Solution Noti ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
- zoj 3591 Nim 博弈论
思路:先生成序列再求异或,最多的可能为n*(n+1)/2: 在去掉其中必败的序列,也就是a[i]=a[j]之间的序列. 代码如下: #include<iostream> #include& ...
- poj 2068 Nim 博弈论
思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...
- poj 2975 Nim 博弈论
令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- 【BZOJ】4147: [AMPPZ2014]Euclidean Nim
[算法]博弈论+数论 [题意]给定n个石子,两人轮流操作,规则如下: 轮到先手操作时:若石子数<p添加p个石子,否则拿走p的倍数个石子.记为属性p. 轮到后手操作时:若石子数<q添加q个石 ...
随机推荐
- Java高阶语法---static
背景:听说static Java高阶语法是挺进BAT必经之路. static: 静态static,很多时候会令我望文生义,但是get到了static最重要的一点,其他的理解都还ok. static最重 ...
- android WebView技术笔记(存储技术)
作为刚刚开始工作的新手程序猿,各种知识还不算熟练,所以将学习到的知识记录一下以免以后忘记. WebView加载h5的知识现在可以说非常的常用,通过加载h5的网页可以在不更新app的情况下来更新app的 ...
- 正则表达式匹配html标签里面的内容
假如html标签里面有一句:String a = "<style type=\"text/css\"> div \n" + "{ marg ...
- Centos6搭建vsftpd
CentOS 6.5下安装Vsftp,虚拟用户一.安装:1.安装Vsftpd服务相关部件:[root@localhost ~]# yum install vsftpd*Loaded plugins: ...
- [20190423]简单测试latch nowilling等待模式.txt
[20190423]简单测试latch nowilling等待模式.txt --//我对这个问题的理解就是如果参数willing=0,表示无法获取该latch,直接退出,再寻找类似的latch.--/ ...
- sparkSQL catalyst
最近想来,大数据相关技术与传统型数据库技术很多都是相互融合.互相借鉴的.传统型数据库强势在于其久经考验的SQL优化器经验,弱势在于分布式领域的高可用性.容错性.扩展性等,假以时日,让其经过一定的改造, ...
- SQL学习笔记---非select操作
非select命令 数据库 1.创建 //create database 库名 2.删除 //drop database 库名,... 2.重命名//exec sp_renamedb ...
- JDBC获取数据库连接
是什么? JDBC:Java Data Base Connectivity(java数据库连接) 为什么用? sun公司提供JDBC API接口,数据库厂商来提供实现 我们需要用哪个数据库就加载那个数 ...
- eclipse 导入gradle引入多模块项目,引入eclipse后变成了好几个工程
1.eclipse 导入gradle 项目 ,选择项目文件夹. 2.导入完成后,文档结构变成 ,多个子项目并列了,而且互不依赖,没有层级结构了. 3.点击项目目录,右上角这个小箭头,选择projec ...
- Linux(一)—— Unix&Linux 历史
Linux(一)-- Unix&Linux 历史 Unix =Unix内核+Unix实用工具 Unix Unix 的诞生 Unix的历史可以追溯到20世纪60年代中期,当时麻省理工学院,AT& ...