【BZOJ2431】逆序对数列(动态规划)

题面

Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

4 1

Sample Output

3

题解

考虑一下\(O(n^{3})\)

设\(f[i][j]\)表示\(i\)的排列中逆序对数为\(j\)的数列个数

现在,如果新加一个数\(i+1\)进来

他可以产生的贡献可以是\([0,i]\)

因此,\(f[i][j]=sum(f[i-1][j-k])\)

其中\(k∈[0,i-1]\)

但是这样子会重复算很多相同的东西

导致复杂度变为\(O(n^{3})\)

用一个前缀和记录一下,可以做到\(O(1)\)的转移

从而复杂度变为了\(O(n^{2})\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 10000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,K;
int f[1100][11000];
int s[11000];
int main()
{
n=read();K=read();
f[1][0]=1;
for(int i=2;i<=n;++i)
{
for(int j=1;j<=K+1;++j)s[j]=(s[j-1]+f[i-1][j-1])%MOD;
for(int j=0;j<=K;++j)
f[i][j]=(s[j+1]-s[max(j-i+1,0)]+MOD)%MOD;
}
printf("%d\n",f[n][K]);
return 0;
}

【BZOJ2431】逆序对数列(动态规划)的更多相关文章

  1. bzoj2431逆序对数列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2431 很容易想到n^3的做法.就是前 i 个数用第 i 个数最多能 i - 1 个逆序对,所 ...

  2. bzoj2431逆序对数列——递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2431 考虑新加入一个数i,根据放的位置不同,可以产生0~i-1个新逆序对: 所以f[i][j ...

  3. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  4. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  5. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  6. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  7. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  8. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  9. 【BZOJ1831】[AHOI2008]逆序对(动态规划)

    [BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...

随机推荐

  1. Vi/Vim的快捷方式

    1 vi/ vim键盘图 2 文字解说 进入编辑模式的6种方式: i在光标前插入 I在行首插入 a在光标后插入 A在行末插入 o在下一行插入 O在上一行插入 删除字符 x 删除当前字符 X 删除前一个 ...

  2. php分布式redis实现session共享

    方法一:找到配置文件php.ini,修改为下面内容,保存并重启服务 session.save_handler = redis session.save_path = "tcp://127.0 ...

  3. Python自动化--语言基础5--面向对象、迭代器、range和切片的区分

    面向对象 一.面向对象代码示例: 1 class Test(): #类的定义 2 car = "buick" #类变量,定义在类里方法外,可被对象直接调用,具有全局效果 3 def ...

  4. selenium自动化测试配置工具整理

    firefox浏览器历史版本 网址通道:http://ftp.mozilla.org/pub/firefox/releases/ chromedriver历史版本 网址通道:http://chrome ...

  5. [翻译]编写高性能 .NET 代码 第二章:垃圾回收

    返回目录 第二章:垃圾回收 垃圾回收是你开发工作中要了解的最重要的事情.它是造成性能问题里最显著的原因,但只要你保持持续的关注(代码审查,监控数据)就可以很快修复这些问题.我这里说的"显著的 ...

  6. 拦截窗体关闭、最大、最小事件 - Winform

    RT,不赘述,代码以下: const int WM_SYSCOMMAND = 0x112; const int SC_CLOSE = 0xF060; const int SC_MINIMIZE = 0 ...

  7. 终极解决方案:java.security.cert.CertificateException: Certificates does not conform to algorithm constraints

    报错信息 javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: Certificates does ...

  8. HDU - 2112 HDU Today Dijkstra

    注意: 1.去重边 2.终点和起点一样,应当输出0 3.是无向图 AC代码 #include <cstdio> #include <cmath> #include <al ...

  9. 算法提高 P1001

    必须感叹下,大数模板就是好用! AC代码: #include <cstdio> #include <cmath> #include <algorithm> #inc ...

  10. hexo持续更新记录

    port:50187