[HAOI2009]逆序对数列
题目描述
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
输入输出格式
输入格式:
第一行为两个整数n,k。
输出格式:
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
输入输出样例
4 1
3
说明
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
测试数据范围
30%的数据 n<=12
100%的数据 n<=1000,k<=1000
日常刷水题.....
显然看数据,f[i][j]表示1~i有j个逆序对的方案数
因为i只能增加0~i-1个逆序对,分别对应放在i-1后面和1前面的情况
那么得到f[i][j]=∑f[i-1][k] max(j-i+1,0)<=k<=j
算法是O(n^3)
用前缀和优化到O(n^2)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long f[][],sum[][];
int n,k;
int main()
{int i,j;
cin>>n>>k;
for (i=;i<=n;i++)
{
f[i][]=;
sum[i][]=;
for (j=;j<=k;j++)
{
if (j-i>=)
f[i][j]=(sum[i-][j]-sum[i-][j-i]+)%;
else f[i][j]=sum[i-][j];
sum[i][j]=f[i][j];
sum[i][j]+=sum[i][j-];
sum[i][j]%=;
}
}
cout<<f[n][k]%<<endl;
}
[HAOI2009]逆序对数列的更多相关文章
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- Bzoj 2431 HAOI2009 逆序对数列
Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...
随机推荐
- 冲刺总结随笔(Alpha)
冲刺总结随笔 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.项目预期进展及现实进展 项目预期 ...
- 201621123040《Java程序设计》第十四周学习总结
1.本周学习总结 1.1以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 显示所有数据库: show databases; 创建数据库: create database test; 删除数据 ...
- python API的安全认证
我们根据pid加客户端的时间戳进行加密md5(pid|时间戳)得到的单向加密串,与时间戳,或者其它字段的串的url给服务端. 服务端接收到请求的url进行分析 客户端时间与服务端的时间戳之差如果大于规 ...
- 实验二Java面向对象程序设计实验报告(2)
实验二 Java面向对象程序设计 实验概述: 课程:程序设计与数据结构 班级:1623班 姓名: 邢天岳 学号:2309 指导老师:娄老师 王老师 实验日期:2017.4.16 实验名称: Java面 ...
- idea搭建springdata+mongodb+maven+springmvc
idea搭建springdata+mongodb+maven+springmvc 今天我们来学习一下SpringData操作MongoDB. 项目环境:IntelliJ IDEA2017+maven3 ...
- istio入门(01)istio的优势在哪里?
Istio能做什么?Istio 试图解决微服务实施后面临的问题.Istio 提供了一个完整的解决方案,对整个服务网格行为洞察和操作控制,以满足微服务应用程序的多样化需求. Istio在服务网络中提供了 ...
- Spring Security 入门(1-8)Spring Security 的配置文件举例
- WebStorm2018破解
参考网站http://www.sdbeta.com/wg/2018/0302/220048.html修改整理如下: webstorm 2018.1正式版破解summary jetbrainscrack ...
- 查看centos版本及32还是64位
1.[root@mini1 ~]# cat /etc/issue 2.[root@mini1 ~]# cat /etc/redhat-release 查看位数: [root@mini1 ~]# g ...
- Maven使用本地jar包(两种方式)
有些项目会用到一些Maven库上没有的jar包,这就需要我们自己引入了 这种情况有两种办法: 第一种方式,在pom文件中引用时使用本地路径: 首先把jar包放到项目中: 然后在pom文件中引入: &l ...