题目描述

K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.

所谓N边关系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支队。

输入输出格式

输入格式:

第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友

输出格式:

输出一个整数,最少可以分多少队

输入输出样例

输入样例#1: 复制

4 5
1 2
1 4
2 4
2 3
3 4
输出样例#1: 复制

3
题目中说只存在“三角关系”,也就是说,原图必是一个弦图
弦图为完美图,必定满足最小色数=最大团点数
求出最大团用MCS(最大势)算法,du[i]为i的势
看不懂?https://wenku.baidu.com/view/6f9f2223dd36a32d73758126.html把基础知识补上,这就是模板题
这里MCS用动态数组可以线性O(n+m)
最大团点数=max(du[i]+1)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
struct Node
{
int next,to;
}edge[];
int ans,head[],n,m,num,best,flag,r,du[];
bool pd[];
vector<int>G[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int main()
{int i,j,u,v;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
for (i=;i<=n;i++)
G[].push_back(i);
best=;
for (i=;i<=n;i++)
{
flag=;
while (flag)
{
for (j=G[best].size()-;j>=;j--)
if (pd[G[best][j]]) G[best].pop_back();
else
{r=G[best][j];flag=;break;}
if (flag) best--;
}
pd[r]=;
for (j=head[r];j;j=edge[j].next)
{
int v=edge[j].to;
if (pd[v]) continue;
G[++du[v]].push_back(v);
best=max(best,du[v]);
}
}
for (i=;i<=n;i++)
ans=max(ans,du[i]+);
cout<<ans;
}

[HNOI2008]神奇的国度的更多相关文章

  1. bzoj1006 [HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2304  Solved: 1043 Description ...

  2. BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)

    题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...

  3. 【bzoj1006】[HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3114  Solved: 1401[Submit][Sta ...

  4. 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题

    1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...

  5. bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1788  Solved: 775[Submit][Stat ...

  6. BZOJ 1006: [HNOI2008]神奇的国度( MCS )

    弦图最小染色...先用MCS求出完美消除序列然后再暴力染色... ------------------------------------------------------------------- ...

  7. bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...

  8. bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法

    [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4370  Solved: 2041[Submit][Status][D ...

  9. BZOJ 1006 [HNOI2008]神奇的国度==最大势算法

    神奇的国度 K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在. ...

  10. [bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关 ...

随机推荐

  1. 使用Dockerfile创建一个tomcat镜像,并运行一个简单war包

    docker已经看了有一段时间了,对镜像和容器也有了一个大致了解,参考书上的例子制作一个tomcat镜像,并简单运行一个HelloWorld.war 1.首先下载linux环境的tomcat和jdk, ...

  2. 关于DLL的创建与使用简单描述(C++、C#)

    前言 前一段时间在学关于DLL的创建与调用,结果发现网络上一大堆别人分享的经验都有点问题.现在整理分享一下自己的方法. 工具 Microsoft Visual Studio 2017 depends ...

  3. 和为S的连续正数序列——牛客网(剑指offer)

    题目描述 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久,他 ...

  4. hdu 4553 约会安排

    约会安排 http://acm.hdu.edu.cn/showproblem.php?pid=4553 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  5. 学习UI的总结

    学习前端有一段时间了,一直在看书上的理论知识,而实战项目却很少.老师常说,想要知道自己的实力有多少,知识掌握了多少,最好的方法就是去实践了,实践出真知嘛.于是在学习中,总要是通过项目的实践以及理论知识 ...

  6. 记一次SQL调优/优化(SQL tuning)——性能大幅提升千倍以上

    好久不写东西了,一直忙于各种杂事儿,恰巧昨天有个用户研发问到我一个SQL调优的问题,说性能太差,希望我能给调优下,最近有些懒,可能和最近太忙有关系,本来打算问问现在的情况,如果差不多就不调了,那哥们儿 ...

  7. 构建微服务开发环境8————Hello 微服务

    [内容指引] 1.用IDEA打开微服务项目; 2.更新Maven依赖: 3.IntelliJ IDEA JDK配置; 4.修改代码: 5.运行微服务: 6.将代码变更提交到Github. 经过前面的努 ...

  8. Python之旅.第三章.函数3.30

    一.迭代器 1.什么是迭代?:迭代是一个重复的过程,并且每次重复都是基于上一次的结果而来2.要想了解迭代器到底是什么?必须先了解一个概念,即什么是可迭代的对象?可迭代的对象:在python中,但凡内置 ...

  9. SpringMVC之数据传递一

    之前的博客中也说了,mvc中数据传递是最主要的一部分,从url到Controller.从view到Controller.Controller到view以及Controller之间的数据传递.今天主要学 ...

  10. spring MVC框架入门(外加SSM整合)

    spring MVC框架 一.什么是sping MVC Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 W ...