题目描述

K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.

所谓N边关系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支队。

输入输出格式

输入格式:

第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友

输出格式:

输出一个整数,最少可以分多少队

输入输出样例

输入样例#1: 复制

4 5
1 2
1 4
2 4
2 3
3 4
输出样例#1: 复制

3
题目中说只存在“三角关系”,也就是说,原图必是一个弦图
弦图为完美图,必定满足最小色数=最大团点数
求出最大团用MCS(最大势)算法,du[i]为i的势
看不懂?https://wenku.baidu.com/view/6f9f2223dd36a32d73758126.html把基础知识补上,这就是模板题
这里MCS用动态数组可以线性O(n+m)
最大团点数=max(du[i]+1)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
struct Node
{
int next,to;
}edge[];
int ans,head[],n,m,num,best,flag,r,du[];
bool pd[];
vector<int>G[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int main()
{int i,j,u,v;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
for (i=;i<=n;i++)
G[].push_back(i);
best=;
for (i=;i<=n;i++)
{
flag=;
while (flag)
{
for (j=G[best].size()-;j>=;j--)
if (pd[G[best][j]]) G[best].pop_back();
else
{r=G[best][j];flag=;break;}
if (flag) best--;
}
pd[r]=;
for (j=head[r];j;j=edge[j].next)
{
int v=edge[j].to;
if (pd[v]) continue;
G[++du[v]].push_back(v);
best=max(best,du[v]);
}
}
for (i=;i<=n;i++)
ans=max(ans,du[i]+);
cout<<ans;
}

[HNOI2008]神奇的国度的更多相关文章

  1. bzoj1006 [HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2304  Solved: 1043 Description ...

  2. BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)

    题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...

  3. 【bzoj1006】[HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3114  Solved: 1401[Submit][Sta ...

  4. 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题

    1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...

  5. bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1788  Solved: 775[Submit][Stat ...

  6. BZOJ 1006: [HNOI2008]神奇的国度( MCS )

    弦图最小染色...先用MCS求出完美消除序列然后再暴力染色... ------------------------------------------------------------------- ...

  7. bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...

  8. bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法

    [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4370  Solved: 2041[Submit][Status][D ...

  9. BZOJ 1006 [HNOI2008]神奇的国度==最大势算法

    神奇的国度 K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在. ...

  10. [bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关 ...

随机推荐

  1. 事后诸葛亮分析——Beta版本

    事后诸葛亮分析 请两个小组在Deadline之前,召开事后诸葛亮会议,发布一篇事后分析报告. 软件工程课的目的,主要是让大家通过做项目,学到软件工程的知识,而不是低水平重复. 软件=程序+软件工程,软 ...

  2. Alpha冲刺No.4

    冲刺Day4 一.站立式会议 本来还想今天下午好好弄弄安卓开发,结果计划赶不上变化.(不存在的) 完成备忘录设计,个人界面设计 二.实际项目进展 搞了404(安卓和ssm的连接),好像还是不太行. 备 ...

  3. 20155303 2016-2017-2 《Java程序设计》第二周学习总结

    20155303 2016-2017-2 <Java程序设计>第二周学习总结 教材学习内容总结 『注意』 "//"为单行批注符: "/*"与&quo ...

  4. Mysql数据库的触发程序

    /** **创建表 */ CREATE TABLE test1(a1 INT); CREATE TABLE test2(a2 INT); CREATE TABLE test3(a3 INT NOT N ...

  5. DML数据操作语言之复杂查询

    1.视图(View) 我们知道,在关系型数据库中,用来保存实际数据记录的是数据表.和表同等概念也是用来保存东西是:视图. 但是数据表是用来保存实际数据记录的,而视图是用来保存常用select语句的. ...

  6. nyoj 阶乘0

    阶乘的0 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 计算n!的十进制表示最后有多少个0   输入 第一行输入一个整数N表示测试数据的组数(1<=N< ...

  7. Mysql主从复制架构实战

    [root@Mysql-master ~]# vim /etc/my.cnf log-bin=mysql-bin server-id = 1  #slave端server-id值改成2 mysql&g ...

  8. Swing使用JavaFXweb组件

    概述 swing中内嵌入web组件的 需要使用一些其他的jar包 ,但是如果使用javafx的组件,那么也比较的方便,性能也比较高. 代码 webview 在javafx 中是作为 scene出现的所 ...

  9. Mysql启动时提示:Another MySQL daemon already running with the same unix socket.

    场景:vmvare虚拟机.centos7.mysql5.7 解决: mv /var/lib/mysql/mysql.sock /var/lib/mysql/mysql.sock.bak 参考: htt ...

  10. SpringBoot(五):@ConfigurationProperties配置参数绑定

    在springmvc或其他ssh框架中如果我们要实现一个配置参数的加载,需要使用代码实现读取properties文件等操作,或者需要使用其他属性@value(name="username&q ...