题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4318
题解:

期望dp
如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就好解决了。

定义g[i]表示以1位置结尾的连续1的长度的期望。
转移显然:g[i]=p[i]*(g[i]+1)
然后定义h[i]表示以1位置结尾的连续1的长度的平方的期望
由于(x+1)^2=x^2+2x+1,
所以h[i]=p[i]*(h[i-1]+2*g[i-1]+1)

最后定义f[i]表示1~i这个区间期望能得到的分数,
分为此时i位置得到1和得到0两种情况:
得到1,由于(x+1)^3=x^3+3*x^2+3x+1 那么贡献为:p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)
得到0,那么直接为前面的期望得分,贡献为(1-p[i])*f[i-1]
所以f[i]的转移为:f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];

.....................................................................

==,难道没有感觉这个f[i]的转移有一丝丝诡异么?
先看看这个错的做法,
多了一个d[i],表示以i结尾形成的连续1的长度的3次方的期望。
那么其转移类似g和h的转移:
d[i]=p[i]*(d[i-1]+3*h[i-1]+3*g[i-1]+1)
然后再去求得f[i],同样地分为当前第i位得到1和得到0两种情况:
f[i]=(得到1)d[i]+(得到0)(1-p[i])*f[i-1]

乍一看似乎没问题,但是在(得到1)那里却出了问题:
f[i]表示的是1~i这个区间期望能够得到的分数,
但是在(得到1)这个转移这里,我们却只考虑了以i结尾的期望的那段1的贡献,然而其它部分的贡献就没有转移过来。
这也就是这个做法得到的答案比正确答案小的原因。
(可以强行把之前的贡献再加进来么?233,我反正加不来。。。)

.......................................................................

现在再反过来看看之前正确的f[i]的求法(没有d[i]数组的那个做法)
f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];

显然(得到0)的那个转移没有问题。

那么我们来想想(得到1)的那么那个转移是如何解决掉那个错误做法出现的问题的。
由于f[i-1]表示的是区间1~i-1的期望得分,
那么我们就可以把f[i-1]看成是由两个部分组成的:
一个部分是以i-1结尾的期望的那段连续的1造成的贡献A(一个长度的3次方的期望),另一部分则是其它部分的贡献B:
所以(得到1)这个转移可以看成是:p[i]*(B+A+3*h[i-1]+3*g[i-1]+1),
显然,后面的A+3*h[i-1]+3*g[i-1]+1计算的就是以i结尾形成的连续1的长度的3次方的期望,
而B则是其它部分的贡献。
所以就是这样巧妙地把新的贡献和其它部分的贡献都统计进了f[i]里面。

以上就是个人的见解。

代码:

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
double g[MAXN],h[MAXN],f[MAXN],p;
int N;
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=1;i<=N;i++){
cin>>p;
g[i]=p*(g[i-1]+1);
h[i]=p*(h[i-1]+2*g[i-1]+1);
f[i]=p*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(1-p)*f[i-1];
}
cout<<fixed<<setprecision(1)<<f[N]<<endl;
return 0;
}

  

●BZOJ 4318 OSU!的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. BZOJ 4318 OSU!(概率DP)

    题意 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在 ...

  3. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  5. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  6. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  7. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

  8. BZOJ 4318: OSU! [DP 概率]

    传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...

  9. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

随机推荐

  1. 201621123062《java程序设计》第14周作业总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 思维导图: 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的 ...

  2. 作业07-Java GUI编程

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 关于事件.事件源.事件监听器的总结: 事件:用户在GUI上进行的操作,如鼠标单击.输入文字.关 ...

  3. mongodb 集群分片

    分片 在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求 当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量,这 ...

  4. 剑指offer-两个链表的第一个公共节点

    题目描述 输入两个链表,找出它们的第一个公共结点. 解题思路 分析可得如果两个链表有公共节点,那么公共节点出现在两个链表的尾部,即从某一节点开始,两链表之后的节点全部相等.可以首先遍历两个链表得出各自 ...

  5. javascript学习(4)异常处理 try-catch 和 onerror

    一.try-catch 1.样例1 1.1.源代码 1.2.执行后 2.样例2 2.1.源代码 2.2.执行后 二.onerror 1.源代码 2.执行后

  6. maven入门(1-3)maven的生命周期

      maven的生命周期 maven的生命周期是抽象的,其实际行为都由插件来完成,引入maven 的 生命周期就是为了对所有的构建过程进行抽象和统一. 这种方式类似于模板方法,模板方法模式在父类中定义 ...

  7. 浅显易懂的谈一谈python中的装饰器!!

    hello大家好~~我是稀里糊涂林老冷,一天天稀里糊涂的. 前一段时间学习了装饰器,觉着这东西好高大上哇靠!!哈哈,一定要总结一下,方便以后自己查阅,也希望帮助其他伙伴们共同进步! 装饰器: 大家可以 ...

  8. 计算机基础,Python基础--变量以及简单的循环

    一.计算机基础 1.CPU 相当于人体的大脑,用于计算处理数据. 2.内存  用于存储数据,CPU从内存调用数据处理计算,运算速度很快. PS:问:既然在内存里的数据CPU运算速度快,为什么计算机不全 ...

  9. 无用代码清除tip

    测试提了个bug过来,说是有个ajax请求报404了. 我一看,后台代码被人删了,问了同事,因为实现机制变了,是应该删,但删多了. 把service和controller都恢复后,一个接口中除了我那个 ...

  10. Nginx配置特定二级域名

    首先把先在域名设置页面把二级域名解析到服务器的公网IP上,这里假设是 bbs.domainname.com 然后编辑 /etc/nginx/sites-available/domain.com.con ...