题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.将某区间每一个数乘上x

3.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k

操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k

操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果


输出格式:

输出包含若干行整数,即为所有操作3的结果。

输入输出样例

输入样例#1:

5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出样例#1:

17
2

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^)

样例说明:

故输出应为17、2(40 mod 38=2)


需要越来越习惯lazy-tag的使用才行啊

tag1表示乘,tag2表示加

线段树的写法真是各有各的风格    大雾

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; inline int read(){
char ch;
int re=;
bool flag=;
while((ch=getchar())!='-'&&(ch<''||ch>''));
ch=='-'?flag=:re=ch-'';
while((ch=getchar())>=''&&ch<='') re=re*+ch-'';
return flag?-re:re;
} struct segment{
int l,r;
ll sum,tag1,tag2;
segment(){
sum=;
tag1=;
tag2=;
}
}; const int maxn=; int cnt,n,m;
ll mod;
segment tre[maxn<<];
int data[maxn]; inline void push_up(int x){
tre[x].sum=(tre[x<<].sum+tre[x<<|].sum)%mod;
} void build(int x,int l,int r){
tre[x].l=l; tre[x].r=r;
if(l==r){
tre[x].sum=data[l];
return;
}
int mid=(l+r)>>;
build(x<<,l,mid); build(x<<|,mid+,r);
push_up(x);
} void init(){
n=read(); m=read(); mod=read();
for(int i=;i<=n;i++) data[i]=read();
build(,,n);
} inline void push_down(int x){
int lson=x<<,rson=lson|; if(tre[x].tag1!=){
tre[lson].tag1=(tre[lson].tag1*tre[x].tag1)%mod;
tre[rson].tag1=(tre[rson].tag1*tre[x].tag1)%mod;
tre[lson].tag2=(tre[lson].tag2*tre[x].tag1)%mod;
tre[rson].tag2=(tre[rson].tag2*tre[x].tag1)%mod;
tre[lson].sum=(tre[lson].sum*tre[x].tag1)%mod;
tre[rson].sum=(tre[rson].sum*tre[x].tag1)%mod;
tre[x].tag1=;
} if(tre[x].tag2){
tre[lson].tag2=(tre[lson].tag2+tre[x].tag2)%mod;
tre[lson].sum=(tre[lson].sum+tre[x].tag2*(tre[lson].r-tre[lson].l+))%mod;
tre[rson].tag2=(tre[rson].tag2+tre[x].tag2)%mod;
tre[rson].sum=(tre[rson].sum+tre[x].tag2*(tre[rson].r-tre[rson].l+))%mod;
tre[x].tag2=;
}
} void update_add(int x,int L,int R,int c){
if(L<=tre[x].l&&tre[x].r<=R){
tre[x].tag2=(tre[x].tag2+c)%mod;
tre[x].sum=(tre[x].sum+c*(tre[x].r-tre[x].l+))%mod;
return;
} int mid=(tre[x].l+tre[x].r)>>;
if(tre[x].tag1!=||tre[x].tag2) push_down(x);
if(R<=mid) update_add(x<<,L,R,c);
else if(L>mid) update_add(x<<|,L,R,c);
else{ update_add(x<<,L,mid,c); update_add(x<<|,mid+,R,c); }
push_up(x);
} void update_mul(int x,int L,int R,int c){
if(L<=tre[x].l&&tre[x].r<=R){
tre[x].tag1=(tre[x].tag1*c)%mod;
tre[x].tag2=(tre[x].tag2*c)%mod;
tre[x].sum=(tre[x].sum*c)%mod;
return;
} int mid=(tre[x].l+tre[x].r)>>;
if(tre[x].tag1!=||tre[x].tag2) push_down(x);
if(R<=mid) update_mul(x<<,L,R,c);
else if(L>mid) update_mul(x<<|,L,R,c);
else{ update_mul(x<<,L,mid,c); update_mul(x<<|,mid+,R,c); }
push_up(x);
} ll query_sum(int x,int L,int R){
if(L<=tre[x].l&&tre[x].r<=R){
return tre[x].sum;
}
if(tre[x].tag1!=||tre[x].tag2) push_down(x);
int mid=(tre[x].l+tre[x].r)>>;
if(R<=mid) return query_sum(x<<,L,R);
if(L>mid) return query_sum(x<<|,L,R);
return (query_sum(x<<,L,mid)+query_sum(x<<|,mid+,R))%mod;
} void solve(){
int opt,L,R,c;
for(int i=;i<m;i++){
opt=read();
switch(opt){
case :{
L=read(); R=read(); c=read();
update_mul(,L,R,c);
break;
}
case :{
L=read(); R=read(); c=read();
update_add(,L,R,c);
break;
}
case :{
L=read(); R=read();
printf("%lld\n",query_sum(,L,R));
break;
}
}
}
} int main(){
//freopen("temp.in","r",stdin);
init();
solve();
return ;
}

她的话不多但笑起来是那么平静优雅

她柔弱的眼神里装的是什么 是思念的忧伤

luogu P3373 【模板】线段树 2的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  3. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  4. 【线段树】【P3372】模板-线段树

    百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个 ...

  5. [Luogu] 可持久化线段树 1(主席树)

    https://www.luogu.org/problemnew/show/P3834 #include<cstdio> #include<iostream> #include ...

  6. 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)

    实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...

  7. Luogu P5280 [ZJOI2019]线段树

    送我退役的神题,但不得不说是ZJOIDay1最可做的一题了 先说一下考场的ZZ想法以及出来后YY的优化版吧 首先发现每次操作其实就是统计出增加的节点个数(原来的不会消失) 所以我们只要统计出线段树上每 ...

  8. luogu 1712 区间(线段树+尺取法)

    题意:给出n个区间,求选择一些区间,使得一个点被覆盖的次数超过m次,最小的花费.花费指的是选择的区间中最大长度减去最小长度. 坐标值这么大,n比较小,显然需要离散化,需要一个技巧,把区间转化为半开半闭 ...

  9. Luogu P3960 列队 线段树

    题面 线段树入门题. 我们考虑线段树来维护这个矩阵. 首先我们先定n+1棵线段树前n棵维护每行前m-1个同学中没有离队过的同学,还有一棵维护第m列中没有离队过的同学.再定n+1棵线段树前n棵线段树维护 ...

  10. Luogu P1471 方差 线段树

    那是上上周...也是重构了四遍...后来GG了...今天又拾起,搞了搞终于过了... 好吧就是个线段树,公式懒得推了https://www.cnblogs.com/Jackpei/p/10693561 ...

随机推荐

  1. CEF3 获取Cookie例子 CefCookieManager C++

    首先从cef_cookie.h 源码种看到CefCookieManager 这个类: // Visit all cookies on the IO thread. The returned cooki ...

  2. canvas实现视频截图

    截取视频当前播放画面,直接上源码. <body> <div class="container"> <video id="test" ...

  3. 高CPU、数据库无法读写的真凶

    有兴趣的同学可以参考如下系列文章,都是针对dump分析的实战和总结: Windbg DUMP分析(原创汇总) http://www.cnblogs.com/LoveOfPrince/p/6653341 ...

  4. CoreAnimation学习,学习总结,记录各种过程中遇到的坑

    1. CAAimation  的 duration = 0 的时候, 这个时候就相当于没有动画了. 2. CAKeyframeAnimation *rotateAnimation = [CAKeyfr ...

  5. 解决Ubuntu SMPlayer播放视频无声音问题

    问题:Ubuntu Kylin 14.04 系统默认装好之后,smplayer播放视频都是正常的,但最近可能由于一些误设置,导致smplayer播放任何格式的视频都无声.解决方法:由于ALSA是Lin ...

  6. ASP.NET MVC5+EF6+EasyUI 后台管理系统(84)-Quartz 作业调度用法详解一

    前言 我从Quartz2.0开始使用,并对其进行了封装了界面,可以参考 http://www.cnblogs.com/ymnets/p/5065154.html 最近拿出来进行了优化,并升级到最新版, ...

  7. 本地存储 web storage

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. Vin码识别(车架号识别)技术,摆脱手动录入提高工作效率

    本文主题:Vin码识别(车架号识别)技术,摆脱手动录入提高工作效率 本文关键词:Vin码识别,汽车Vin码识别,车架号识别,汽车车架号识别,车代码识别,车代号识别 本文主旨:一.Vin码(车架号)在什 ...

  9. 第一次接触Axure

    现在已经是凌晨4:21了,我的第一份Axure.RP文件终于接近尾声,我带着些许疲倦些许兴奋的状态写下这篇博客,记录我和Axure的初遇.       三天前,我加入了湖南大学金山俱乐部,参加了第一次 ...

  10. ASP.NET Core 源码学习之 Options[1]:Configure

    配置的本质就是字符串的键值对,但是对于面向对象语言来说,能使用强类型的配置是何等的爽哉! 目录 ASP.NET Core 配置系统 强类型的 Options Configure 方法 源码解析 ASP ...