hdu5145 NPY and girls
人生中第一道莫队,本来以为是一道水题的。。
首先这题只有区间查询,没有修改操作,使用莫队比较明显,但统计答案有点麻烦。。
根据题意,在n个人里选m个不相同种类的人,设第i种人数量为ai,总方案为c(n,a1)*c(n-a1,a2)*c(n-a1-a2,a3)*...*c(n-a1-a2-...-an-1,an)。而我们要用O(1)的复杂度实现转移,那么我们可以用c(n,m)=c(n-1,m-1)*n/m来实现转移,在模意义下除法必须使用逆元,那么我们利用费马小定理预处理出每个值的逆元就好了。。
总的来说,莫队算法真的很神啊。。不仅思想简单,实现简单,复杂度还很优秀。。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf 1<<30
#define il inline
#define RG register
#define ll long long
#define eps 1e-9
#define rhl 1000000007LL
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct node{ int l,r,id,bl; }p[30010]; int a[30010],c[30010],n,m;
ll inv[30010],ans[30010]; il int gi(){
RG int x=0,q=0; RG char ch=getchar();
while ((ch<'0' || ch>'9') && ch!='-') ch=getchar(); if (ch=='-') q=1,ch=getchar();
while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q ? -x : x;
} il int cmpt(const node &a,const node &b){ return a.bl<b.bl || (a.bl==b.bl && a.r<b.r); } il ll q_pow(RG ll a,RG ll b){ RG ll ans=1,x=a; while (b){ if (b&1) ans=ans*x%rhl; x=x*x%rhl,b>>=1; } return ans; } il void solve(){
RG int l=1,r=0; RG ll Ans=1;
for (RG int i=1;i<=m;++i){
while (l>p[i].l){ l--,c[a[l]]++,Ans=Ans*(ll)(r-l+1)%rhl*inv[c[a[l]]]%rhl; }
while (r<p[i].r){ r++,c[a[r]]++,Ans=Ans*(ll)(r-l+1)%rhl*inv[c[a[r]]]%rhl; }
while (l<p[i].l){ Ans=Ans*(ll)c[a[l]]%rhl*inv[r-l+1]%rhl,c[a[l]]--,l++; }
while (p[i].r<r){ Ans=Ans*(ll)c[a[r]]%rhl*inv[r-l+1]%rhl,c[a[r]]--,r--; }
ans[p[i].id]=Ans;
}
return;
} il void work(){
n=gi(),m=gi(); RG int block=sqrt(n*1.0); for (RG int i=1;i<=n;++i) a[i]=gi(),c[i]=0,ans[i]=0;
for (RG int i=1;i<=m;++i) p[i].l=gi(),p[i].r=gi(),p[i].id=i,p[i].bl=(p[i].l-1)/block+1;
sort(p+1,p+m+1,cmpt); solve(); for (RG int i=1;i<=m;++i) printf("%lld\n",ans[i]); return;
} int main(){
File("npy");
for (RG int i=1;i<=30000;++i) inv[i]=q_pow((ll)i,(ll)rhl-2);
RG int T=gi(); while (T--) work();
return 0;
}
hdu5145 NPY and girls的更多相关文章
- HDU 5145 NPY and girls 莫队+逆元
NPY and girls Problem Description NPY's girlfriend blew him out!His honey doesn't love him any more! ...
- NPY and girls
NPY and girls 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5145 莫队算法 注意到没有修改区间的操作,使用莫队算法:将整个区间分成若干 ...
- 【HDU 5145】 NPY and girls(组合+莫队)
pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...
- HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)
传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...
- HDU 5145 - NPY and girls
题意: cases T(1≤T≤10) (0<n,m≤30000) (0<ai≤30000) n个数ai 表示n个女孩所在教室 m次询问 [L,R](1 <= L <= ...
- HDU 5145 NPY and girls(莫队算法+乘法逆元)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5145 [题目大意] 给出一个数列,每次求一个区间数字的非重排列数量.答案对1e9+7取模. [题解 ...
- HDU 5145 NPY and girls (莫队分块离线)
题目地址:HDU 5145 莫队真的好奇妙.. 这种复杂度竟然仅仅有n*sqrt(n)... 裸的莫队分块,先离线.然后按左端点分块,按块数作为第一关键字排序.然后按r值作为第二关键字进行排序. 都是 ...
- hdu 5145(莫队算法+逆元)
NPY and girls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- NPY and girls-HDU5145莫队算法
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...
随机推荐
- MySQL+SSM+Ajax上传图片问题
第一次写上传图片的代码,碰到很多问题.昨天做了整整一天,终于在晚上的时候成功了.大声欢呼. 但是,做完之后,还是有很多问题想不通.所以在这里也算是写个笔记,日后忘记了可以回顾,也算请教各路朋友.(^_ ...
- Apache无法启动原因
Apache不能启动解决办法 作者的话:遇到这个问题的时候,从网上找了很多资料,结果都是让我这个新手摸不着头绪 还好,在我长时间的查找下,还是找到了一篇文章,解决了我的烦恼,下面是我对这个文章的一些对 ...
- NIO(三、Channel)
目录 NIO(一.概述) NIO(二.Buffer) NIO(三.Channel) Channel 上文说了描述了Buffer的实现机制,那么这个章节就主要描述数据是如何进入缓冲区的,并且又是如何从缓 ...
- 模拟一个shuffle
之所以会想到写这么一个shuffle的例子,是因为一个需求:我需要把一个有序数组中的数据随机的打散.java代码如下, public void shuffle() { int[] arr = {1,2 ...
- 海量数据集利用Minhash寻找相似的集合【推荐优化】
MinHash 首先它是一种基于 Jaccard Index 相似度的算法,也是一种 LSH 的降维的方法,应用于大数据集的相似度检索.推荐系统.下边按我的理解介绍下MinHash 问题背景 给出N个 ...
- 数据结构(三) 用java实现七种排序算法。
很多时候,听别人在讨论快速排序,选择排序,冒泡排序等,都觉得很牛逼,心想,卧槽,排序也分那么多种,就觉得别人很牛逼呀,其实不然,当我们自己去了解学习后发现,并没有想象中那么难,今天就一起总结一下各种排 ...
- Nginx+Tomcat动静分离脚本
#!/bin/bashsetenforce 0systemctl stop firewalldtar -zxvf nginx-1.8.0.tar.gz -C /usr/src/ cd /usr/src ...
- 重温Javascript(二)
对象 可以想象成散列表,键值对,值可以是数据或函数 创建对象的方式 1.工厂模式 function createPerson(name, age, job){ var o = new Object() ...
- 老李分享:android手机测试之适配(1)
Android的屏幕适配一直以来都在折磨着我们这些开发者,本篇文章以Google的官方文档为基础,全面而深入的讲解了Android屏幕适配的原因.重要概念.解决方案及最佳实践,我相信如果你能认真的学习 ...
- Grafana中多租户设置
Grafana中通过设置不同的组织,以及将用户分配到不同组织,来做到多租户,类似门户的概念. Grafana默认是不允许非管理员用户创建新的组织的,这个可以通过修改配置文件以允许非管理员用户创建组织: ...