人生中第一道莫队,本来以为是一道水题的。。

首先这题只有区间查询,没有修改操作,使用莫队比较明显,但统计答案有点麻烦。。

根据题意,在n个人里选m个不相同种类的人,设第i种人数量为ai,总方案为c(n,a1)*c(n-a1,a2)*c(n-a1-a2,a3)*...*c(n-a1-a2-...-an-1,an)。而我们要用O(1)的复杂度实现转移,那么我们可以用c(n,m)=c(n-1,m-1)*n/m来实现转移,在模意义下除法必须使用逆元,那么我们利用费马小定理预处理出每个值的逆元就好了。。

总的来说,莫队算法真的很神啊。。不仅思想简单,实现简单,复杂度还很优秀。。

//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf 1<<30
#define il inline
#define RG register
#define ll long long
#define eps 1e-9
#define rhl 1000000007LL
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct node{ int l,r,id,bl; }p[30010]; int a[30010],c[30010],n,m;
ll inv[30010],ans[30010]; il int gi(){
RG int x=0,q=0; RG char ch=getchar();
while ((ch<'0' || ch>'9') && ch!='-') ch=getchar(); if (ch=='-') q=1,ch=getchar();
while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q ? -x : x;
} il int cmpt(const node &a,const node &b){ return a.bl<b.bl || (a.bl==b.bl && a.r<b.r); } il ll q_pow(RG ll a,RG ll b){ RG ll ans=1,x=a; while (b){ if (b&1) ans=ans*x%rhl; x=x*x%rhl,b>>=1; } return ans; } il void solve(){
RG int l=1,r=0; RG ll Ans=1;
for (RG int i=1;i<=m;++i){
while (l>p[i].l){ l--,c[a[l]]++,Ans=Ans*(ll)(r-l+1)%rhl*inv[c[a[l]]]%rhl; }
while (r<p[i].r){ r++,c[a[r]]++,Ans=Ans*(ll)(r-l+1)%rhl*inv[c[a[r]]]%rhl; }
while (l<p[i].l){ Ans=Ans*(ll)c[a[l]]%rhl*inv[r-l+1]%rhl,c[a[l]]--,l++; }
while (p[i].r<r){ Ans=Ans*(ll)c[a[r]]%rhl*inv[r-l+1]%rhl,c[a[r]]--,r--; }
ans[p[i].id]=Ans;
}
return;
} il void work(){
n=gi(),m=gi(); RG int block=sqrt(n*1.0); for (RG int i=1;i<=n;++i) a[i]=gi(),c[i]=0,ans[i]=0;
for (RG int i=1;i<=m;++i) p[i].l=gi(),p[i].r=gi(),p[i].id=i,p[i].bl=(p[i].l-1)/block+1;
sort(p+1,p+m+1,cmpt); solve(); for (RG int i=1;i<=m;++i) printf("%lld\n",ans[i]); return;
} int main(){
File("npy");
for (RG int i=1;i<=30000;++i) inv[i]=q_pow((ll)i,(ll)rhl-2);
RG int T=gi(); while (T--) work();
return 0;
}

hdu5145 NPY and girls的更多相关文章

  1. HDU 5145 NPY and girls 莫队+逆元

    NPY and girls Problem Description NPY's girlfriend blew him out!His honey doesn't love him any more! ...

  2. NPY and girls

    NPY and girls 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5145 莫队算法 注意到没有修改区间的操作,使用莫队算法:将整个区间分成若干 ...

  3. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  4. HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)

    传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...

  5. HDU 5145 - NPY and girls

    题意: cases T(1≤T≤10) (0<n,m≤30000) (0<ai≤30000)    n个数ai 表示n个女孩所在教室 m次询问 [L,R](1 <= L <= ...

  6. HDU 5145 NPY and girls(莫队算法+乘法逆元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5145 [题目大意] 给出一个数列,每次求一个区间数字的非重排列数量.答案对1e9+7取模. [题解 ...

  7. HDU 5145 NPY and girls (莫队分块离线)

    题目地址:HDU 5145 莫队真的好奇妙.. 这种复杂度竟然仅仅有n*sqrt(n)... 裸的莫队分块,先离线.然后按左端点分块,按块数作为第一关键字排序.然后按r值作为第二关键字进行排序. 都是 ...

  8. hdu 5145(莫队算法+逆元)

    NPY and girls Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

随机推荐

  1. CSS 去掉点li 的点

    转:http://blog.sina.com.cn/s/blog_63b13c300100jyek.html 方法一: <ul> <li style="list-style ...

  2. Android全局异常捕捉

    // 定义自定义捕捉 package com.xiaosw.test; import java.io.File; import java.io.FileOutputStream; import jav ...

  3. C++—动态内存管理之深入探究new和delete

    C++中程序存储空间除栈空间和静态区外,每个程序还拥有一个内存池,这部分内存被称为自由空间(free store)或堆(heap).程序用堆来存储动态分配的对象,即,那些程序运行时分配的对象.动态对象 ...

  4. MySQL 查询重复的数据,以及部分字段去重和完全去重

    1.查找表中多余的重复记录(多个字段) select * from vitae a where (a.peopleId,a.seq) in  (select peopleId,seq from vit ...

  5. linux最小安装

    (1)系统安装类型选择及自定义额外包组 进入如图2-28所示界面.上半部分是系统定制的不同的系统安装类型选择项,默认是“Desktop”,这里我们选择“Minimal”,即最小化安装,下半部分是在上面 ...

  6. Node.js服务端框架谁才是你的真爱

    1. Express 背景: Express, 疯一般快速(而简洁)的服务端JavaScript Web开发框架,基于Node.js和V8 JavaScript引擎. Express 是一个基于 No ...

  7. Omi新成员omi-router正式发布

    原文链接-https://github.com/AlloyTeam/omi/blob/master/tutorial omi-router omi-router是Omi框架专属的router插件,文件 ...

  8. JS——操作内容、操作相关元素

    操作内容:普通元素.innerHTML = "值": 会把标记执行渲染普通元素.innerText = "值": 将值原封不动的展示出来,即使里面有标记 var ...

  9. 【转】一个小工具类,利用shareObject把数据缓存

    原文链接:http://bbs.9ria.com/thread-284082-1-2.html 之前做一个数据缓存,就顺便把写入缓存,清除缓存,获取缓存都整理了一下,其中也做了些参考,个人水平有限,有 ...

  10. Struts2基础学习(三)—Result和数据封装

    一.Result      Action处理完用户请求后,将返回一个普通的字符串,整个普通字符串就是一个逻辑视图名,Struts2根据逻辑视图名,决定响应哪个结果,处理结果使用<result&g ...