Float精度丢失
BigDecimal _0_1 = new BigDecimal(0.1);
BigDecimal x = _0_1;
for(int i = 1; i <= 10; i ++) {
System.out.println(i+" x 0.1 is "+x+", as double "+x.doubleValue());
x = x.add(_0_1);
}
输出:
0.1000000000000000055511151231257827021181583404541015625, as double 0.1
0.2000000000000000111022302462515654042363166809082031250, as double 0.2
0.3000000000000000166533453693773481063544750213623046875, as double 0.30000000000000004
0.4000000000000000222044604925031308084726333618164062500, as double 0.4
0.5000000000000000277555756156289135105907917022705078125, as double 0.5
0.6000000000000000333066907387546962127089500427246093750, as double 0.6000000000000001
0.7000000000000000388578058618804789148271083831787109375, as double 0.7000000000000001
0.8000000000000000444089209850062616169452667236328125000, as double 0.8
0.9000000000000000499600361081320443190634250640869140625, as double 0.9
1.0000000000000000555111512312578270211815834045410156250, as double 1.0
原因:
Most answers here address this question in very dry, technical terms. I'd like to address this in terms that normal human beings can understand.
Imagine that you are trying to slice up pizzas. You have a robotic pizza cutter that can cut pizza slices exactly in half. It can halve a whole pizza, or it can halve an existing slice, but in any case, the halving is always exact.
That pizza cutter has very fine movements, and if you start with a whole pizza, then halve that, and continue halving the smallest slice each time, you can do the halving 53 times before the slice is too small for even its high-precision abilities. At that point, you can no longer halve that very thin slice, but must either include or exclude it as is.
Now, how would you piece all the slices in such a way that would add up to one-tenth (0.1) or one-fifth (0.2) of a pizza? Really think about it, and try working it out. You can even try to use a real pizza, if you have a mythical precision pizza cutter at hand. :-)
Most experienced programmers, of course, know the real answer, which is that there is no way to piece together an exact tenth or fifth of the pizza using those slices, no matter how finely you slice them. You can do a pretty good approximation, and if you add up the approximation of 0.1 with the approximation of 0.2, you get a pretty good approximation of 0.3, but it's still just that, an approximation.
For double-precision numbers (which is the precision that allows you to halve your pizza 53 times), the numbers immediately less and greater than 0.1 are 0.09999999999999999167332731531132594682276248931884765625 and 0.1000000000000000055511151231257827021181583404541015625. The latter is quite a bit closer to 0.1 than the former, so a numeric parser will, given an input of 0.1, favour the latter.
(The difference between those two numbers is the "smallest slice" that we must decide to either include, which introduces an upward bias, or exclude, which introduces a downward bias. The technical term for that smallest slice is an ulp.)
In the case of 0.2, the numbers are all the same, just scaled up by a factor of 2. Again, we favour the value that's slightly higher than 0.2.
Notice that in both cases, the approximations for 0.1 and 0.2 have a slight upward bias. If we add enough of these biases in, they will push the number further and further away from what we want, and in fact, in the case of 0.1 + 0.2, the bias is high enough that the resulting number is no longer the closest number to 0.3.
In particular, 0.1 + 0.2 is really 0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125, whereas the number closest to 0.3 is actually 0.299999999999999988897769753748434595763683319091796875.
总结:
这也解释通了0.1可以精确输出,0.3也可以精确输出 ,而0.1+0.1+0.1输出 0.30000000000000004;因为0.1 + 0.2实际上是0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.299999999999999988897769753748434595763683319091796875。
@Test
public void test() {
double a = 0.1;
double b = 0.3;
System.out.println("a:"+a);
System.out.println("b:"+b);
System.out.println("a+a+a:"+(a+a+a)); } a:0.1
b:0.3
a+a+a:0.30000000000000004
参考: https://stackoverflow.com/questions/588004/is-floating-point-math-broken
https://stackoverflow.com/questions/26120311/why-does-adding-0-1-multiple-times-remain-lossless?noredirect=1
Float精度丢失的更多相关文章
- iOS项目double、float精度丢失解决办法
描述 在iOS项目中老是遇到double.float精度丢失的问题 PS: NSString * jsonStr = @"{\"9.70\":9.70,\"67 ...
- java防止double和float精度丢失的方法
在浮点数当中做运算时经常会出现精度丢失的情况,如果做项目不作处理的话会对商家造成很大的影响的.项目尤其是金融相关的项目对这些运算的精度要求较高. 问题原因:首先计算机进行的是二进制运算,我们输入的十进 ...
- java中double和float精度丢失问题
为什么会出现这个问题呢,就这是java和其它计算机语言都会出现的问题,下面我们分析一下为什么会出现这个问题:float和double类型主要是为了科学计算和工程计算而设计的.他们执行二进制浮点运算,这 ...
- java中double和float精度丢失问题及解决方法
在讨论两位double数0.2和0.3相加时,毫无疑问他们相加的结果是0.5.但是问题总是如此吗? 下面我们让下面两个doubles数相加,然后看看输出结果: @Test public void te ...
- float精度丢失的问题
在做IPTV的时候,遇到以下这个问题: 现有一个float型数据,以下代码打印输出: float n = 40272.48f; System.out.println(new Double(n * 10 ...
- mysql float 精度丢失
mysql 中保存了字段 float s=0.3 直接执行sql 查出来是 0.3 但是JPA 执行查询结果是 0.2999 换成decimal 就可以
- [ JAVA编程 ] double类型计算精度丢失问题及解决方法
前言 如果你在测试金融相关产品,请务必覆盖交易金额为小数的场景.特别是使用Java语言的初级开发. Java基本实例 先来看Java中double类型数值加.减.乘.除计算式实例: public cl ...
- Java:利用BigDecimal类巧妙处理Double类型精度丢失
目录 本篇要点 经典问题:浮点数精度丢失 十进制整数如何转化为二进制整数? 十进制小数如何转化为二进制数? 如何用BigDecimal解决double精度问题? new BigDecimal(doub ...
- iOS - Json解析精度丢失处理(NSString, Double, Float)
开发中处理处理价格金额问题, 后台经常返回float类型, 打印或转成NSString都会有精度丢失问题, 因此使用系统自带的NSDecimalNumber做处理, 能解决这问题:经过测试其实系统NS ...
随机推荐
- Gridview 动态添加行
/// <summary> /// 首次加载绑定 /// </summary> private void DataLoad() { list.Add(new P ...
- LeetCode 533. Lonely Pixel II (孤独的像素之二) $
Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...
- CentOs 系统启动流程相关
CentOS的启动流程 1)加载BIOS 的硬件信息,获取第一个启动设备 2)读取第一个启动设备MBR 的引导加载程序(grub) 的启动信息 3)加载核心操作系统的核心信息,核心开始解压缩,并尝试驱 ...
- 剑指offer(一)
面试题3:二维数组中查找 题目描述: 在一个二维数组中,每一行都按照从左往右递增地顺序排序,每一列都按照从上往下递增的顺序排序.请完成一个函数,输入这样的一个数组和一个整数,判断数组中是否存在该整数. ...
- MicroService.Core简易微服务框架《一、简介》
MicroService.Core MicroService.Core 的初衷是为了方便的创建一个微服务, 可作为 Windows Service 或者控制台模式启动. 它底层使用了 OWin 自托管 ...
- C#设计模式之十二享元模式(Flyweight)【结构型】
一.引言 今天我们要讲[结构型]设计模式的第六个模式,该模式是[享元模式],英文名称是:Flyweight Pattern.还是老套路,先从名字上来看看."享元"是不是可以这样 ...
- IIC接口下的24C02 驱动分析
本节来学习IIC接口下的24C02 驱动分析,本节学完后,再来学习Linux下如何使用IIC操作24C02 1.I2C通信介绍 它是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据,是一个多 ...
- Node.js EventEmitter
Node.js EventEmitter Node.js 所有的异步 I/O 操作在完成时都会发送一个事件到事件队列. Node.js里面的许多对象都会分发事件:一个net.Server对象会在每次有 ...
- web前端学习路线和步骤
H5+全栈工程师 (学习下列技术可以加QQ: 1416 7596 61)第一阶段:初级入门阶段基本功 1.HTML入门 Windows概述.浏览器概述.HTML简介.HTML标签详解.前端开发工具概 ...
- NFC (Near Filed Communication)
NFC的用途:近场通信(Near Field Communication,NFC),又称近距离无线通信,是一种短距离的高频无线通信技术,允许电子设备之间进行非接触式点对点数据传输(在十厘米内)交换数据 ...