Float精度丢失
BigDecimal _0_1 = new BigDecimal(0.1);
BigDecimal x = _0_1;
for(int i = 1; i <= 10; i ++) {
System.out.println(i+" x 0.1 is "+x+", as double "+x.doubleValue());
x = x.add(_0_1);
}
输出:
0.1000000000000000055511151231257827021181583404541015625, as double 0.1
0.2000000000000000111022302462515654042363166809082031250, as double 0.2
0.3000000000000000166533453693773481063544750213623046875, as double 0.30000000000000004
0.4000000000000000222044604925031308084726333618164062500, as double 0.4
0.5000000000000000277555756156289135105907917022705078125, as double 0.5
0.6000000000000000333066907387546962127089500427246093750, as double 0.6000000000000001
0.7000000000000000388578058618804789148271083831787109375, as double 0.7000000000000001
0.8000000000000000444089209850062616169452667236328125000, as double 0.8
0.9000000000000000499600361081320443190634250640869140625, as double 0.9
1.0000000000000000555111512312578270211815834045410156250, as double 1.0
原因:
Most answers here address this question in very dry, technical terms. I'd like to address this in terms that normal human beings can understand.
Imagine that you are trying to slice up pizzas. You have a robotic pizza cutter that can cut pizza slices exactly in half. It can halve a whole pizza, or it can halve an existing slice, but in any case, the halving is always exact.
That pizza cutter has very fine movements, and if you start with a whole pizza, then halve that, and continue halving the smallest slice each time, you can do the halving 53 times before the slice is too small for even its high-precision abilities. At that point, you can no longer halve that very thin slice, but must either include or exclude it as is.
Now, how would you piece all the slices in such a way that would add up to one-tenth (0.1) or one-fifth (0.2) of a pizza? Really think about it, and try working it out. You can even try to use a real pizza, if you have a mythical precision pizza cutter at hand. :-)
Most experienced programmers, of course, know the real answer, which is that there is no way to piece together an exact tenth or fifth of the pizza using those slices, no matter how finely you slice them. You can do a pretty good approximation, and if you add up the approximation of 0.1 with the approximation of 0.2, you get a pretty good approximation of 0.3, but it's still just that, an approximation.
For double-precision numbers (which is the precision that allows you to halve your pizza 53 times), the numbers immediately less and greater than 0.1 are 0.09999999999999999167332731531132594682276248931884765625 and 0.1000000000000000055511151231257827021181583404541015625. The latter is quite a bit closer to 0.1 than the former, so a numeric parser will, given an input of 0.1, favour the latter.
(The difference between those two numbers is the "smallest slice" that we must decide to either include, which introduces an upward bias, or exclude, which introduces a downward bias. The technical term for that smallest slice is an ulp.)
In the case of 0.2, the numbers are all the same, just scaled up by a factor of 2. Again, we favour the value that's slightly higher than 0.2.
Notice that in both cases, the approximations for 0.1 and 0.2 have a slight upward bias. If we add enough of these biases in, they will push the number further and further away from what we want, and in fact, in the case of 0.1 + 0.2, the bias is high enough that the resulting number is no longer the closest number to 0.3.
In particular, 0.1 + 0.2 is really 0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125, whereas the number closest to 0.3 is actually 0.299999999999999988897769753748434595763683319091796875.
总结:
这也解释通了0.1可以精确输出,0.3也可以精确输出 ,而0.1+0.1+0.1输出 0.30000000000000004;因为0.1 + 0.2实际上是0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.299999999999999988897769753748434595763683319091796875。
@Test
public void test() {
double a = 0.1;
double b = 0.3;
System.out.println("a:"+a);
System.out.println("b:"+b);
System.out.println("a+a+a:"+(a+a+a)); } a:0.1
b:0.3
a+a+a:0.30000000000000004
参考: https://stackoverflow.com/questions/588004/is-floating-point-math-broken
https://stackoverflow.com/questions/26120311/why-does-adding-0-1-multiple-times-remain-lossless?noredirect=1
Float精度丢失的更多相关文章
- iOS项目double、float精度丢失解决办法
描述 在iOS项目中老是遇到double.float精度丢失的问题 PS: NSString * jsonStr = @"{\"9.70\":9.70,\"67 ...
- java防止double和float精度丢失的方法
在浮点数当中做运算时经常会出现精度丢失的情况,如果做项目不作处理的话会对商家造成很大的影响的.项目尤其是金融相关的项目对这些运算的精度要求较高. 问题原因:首先计算机进行的是二进制运算,我们输入的十进 ...
- java中double和float精度丢失问题
为什么会出现这个问题呢,就这是java和其它计算机语言都会出现的问题,下面我们分析一下为什么会出现这个问题:float和double类型主要是为了科学计算和工程计算而设计的.他们执行二进制浮点运算,这 ...
- java中double和float精度丢失问题及解决方法
在讨论两位double数0.2和0.3相加时,毫无疑问他们相加的结果是0.5.但是问题总是如此吗? 下面我们让下面两个doubles数相加,然后看看输出结果: @Test public void te ...
- float精度丢失的问题
在做IPTV的时候,遇到以下这个问题: 现有一个float型数据,以下代码打印输出: float n = 40272.48f; System.out.println(new Double(n * 10 ...
- mysql float 精度丢失
mysql 中保存了字段 float s=0.3 直接执行sql 查出来是 0.3 但是JPA 执行查询结果是 0.2999 换成decimal 就可以
- [ JAVA编程 ] double类型计算精度丢失问题及解决方法
前言 如果你在测试金融相关产品,请务必覆盖交易金额为小数的场景.特别是使用Java语言的初级开发. Java基本实例 先来看Java中double类型数值加.减.乘.除计算式实例: public cl ...
- Java:利用BigDecimal类巧妙处理Double类型精度丢失
目录 本篇要点 经典问题:浮点数精度丢失 十进制整数如何转化为二进制整数? 十进制小数如何转化为二进制数? 如何用BigDecimal解决double精度问题? new BigDecimal(doub ...
- iOS - Json解析精度丢失处理(NSString, Double, Float)
开发中处理处理价格金额问题, 后台经常返回float类型, 打印或转成NSString都会有精度丢失问题, 因此使用系统自带的NSDecimalNumber做处理, 能解决这问题:经过测试其实系统NS ...
随机推荐
- WPF ListBox 一些小知识点
页面代码: <Grid Grid.Row="0" Grid.Column="2"> <ListBox x:Name="lvStep& ...
- 深入理解final和static关键字
深入理解final和static关键字 参考:http://blog.csdn.net/qq1028951741/article/details/53418852 final关键字 final关键字可 ...
- java:凯撒密码及String的应用
一,凯撒密码 古罗马皇帝凯撒在打仗时曾使用过以下方法加密军事情报 现在用java实现 程序设计思想: 1,字符串首先要转化为字符数组,才能依次加密 2,当原来的字符为X,Y,Z时,加密后要转化为A,B ...
- Myeclipse 2014破解教程
现在很多java编程软件人士大都使用MyEclipse,这软件的强大之处我就不说了,我说下安装步骤与破解步骤,若无JDK则先安装再配置环境变量,这个我就不讲了 工具/原料 MyEclipse安装包 ...
- Vim 神器的打造方式
Vim 神器的打造方式 [字体:大 中 小] Vim 是一个上古神器,本篇文章主要持续总结使用 Vim 的过程中不得不了解的一些指令和注意事项,以及持续分享一个前端工作者不得不安装的一些插 ...
- linux下使用crontab实现定时PHP计划任务失败的原因分析
这篇文章主要介绍了linux下使用crontab实现定时PHP计划任务失败的原因分析,需要的朋友可以参考下 很多人在linux下使用crontab实现PHP执行定时任务却未能成功,不能生成缓存.本 ...
- Github和Github for windows的使用简介
很多程序员都把自己开发的代码放到Github上,方便自己管理也有利于别人查阅.所以这两天我也捣鼓了一下这个东西,现在把怎么使用Github和Github for windows简单的总结一下. 1.现 ...
- VS2008 C++ 利用WinHttp API获取Http请求/响应头部Header
http://www.cnblogs.com/LCCRNblog/p/3833472.html 这一篇博客中,实现了获取http请求/响应后的html源码,现在需要获取http请求/响应的头部Head ...
- Windows环境下多线程编程原理与应用读书笔记(3)————Windows环境中的多线程实现(3)
纤程 纤程(fiber): 相当于用户级别的线程或轻进程.纤程由Win32库函数支持,对核心是不可见的.纤程可以通过SwitchToFiber显示至另一合作纤程,以实现合作纤程之间的协同.线程是在Wi ...
- poj 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 678 Accepted: 310 Des ...