const int maxn=;//最大点数
const int maxm=;//最大边数
int n,m;//n表示点数,m表示边数
struct edge{int u,v,w;} e[maxm];//u,v,w分别表示该边的两个顶点和权值
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int fa[maxn];//因为需要用到并查集来判断两个顶点是否属于同一个连通块
int find(int x)
{
if(x==fa[x]) return x;
else return fa[x]=find(fa[x]);
}
int kruscal()
{
int ans=-;
sort(e+,e++m,cmp);
for(int i=;i<=n;++i) fa[i]=i;//初始化并查集
int cnt=n;
for(int i=;i<=m;++i)
{
int t1=find(e[i].u);
int t2=find(e[i].v);
if(t1!=t2)
{
if(cnt==) break;
fa[t1]=t2;
ans=max(ans,e[i].w);
cnt--;
}
}
return ans;
}

Kruscal(最小生成树)算法模版的更多相关文章

  1. [算法模版]Prim-完全图最小生成树

    [算法模版]Prim-完全图最小生成树 众所周知,对于常用的Kruskal算法,算法复杂度为\(O(m \log m)\).这在大多数场景下已经够用了.但是如果遇到及其稠密的完全图,Prim算法就能更 ...

  2. 最小生成树算法(Prim,Kruskal)

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  3. Prim 最小生成树算法

    Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法.和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm). P ...

  4. Kruskal 最小生成树算法

    对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...

  5. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  6. 最小生成树算法 prim kruskal两种算法实现 HDU-1863 畅通工程

    最小生成树 通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小.这就是最小生成树 可以参考下图,便于理解 原来的图: 最小生成树(蓝色线): ...

  7. 笔试算法题(50):简介 - 广度优先 & 深度优先 & 最小生成树算法

    广度优先搜索&深度优先搜索(Breadth First Search & Depth First Search) BFS优缺点: 同一层的所有节点都会加入队列,所以耗用大量空间: 仅能 ...

  8. [算法系列之二十七]Kruskal最小生成树算法

    简单介绍 求最小生成树一共同拥有两种算法,一个是就是本文所说的Kruskal算法,还有一个就是Prime算法. 在具体解说Kruskal最小生成树算法之前,让我们先回想一下什么是最小生成树. 我们有一 ...

  9. [算法模版]Tarjan爷爷的几种图论算法

    [算法模版]Tarjan爷爷的几种图论算法 前言 Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会).这里会对这三种算法进行简单介绍. 定义 强连通(strongl ...

随机推荐

  1. iOS 电脑新装的系统, 使用sourceTree 创建本地仓库的时候, 总是提示, 无效路径

    把qq聊天记录分享出来: 我电脑新装的系统, 使用sourceTree 创建本地仓库的时候, 总是提示, 无效路径请问哪位遇到过求指教群里有产品经理没有? ssh 配制的不对重装系统过后,重新生成一下 ...

  2. 网口做trunk

    首先发现这个服务器的两个网口对应的交换机端口 ailixin-asw2960>en ailixin-asw2960#terminal monitor 查看端口的状态 ailixin-asw296 ...

  3. 挑战App Store,微信通过“跳一跳”秀了一下“小程序”的肌肉

    2017年即将结束的时候,微信放了一个大招.随着最新的微信v6.6.1版本更新,基于小程序的"小游戏"板块正式上线.微信上首发的这款"小游戏"叫"跳一 ...

  4. [Upper case conversion ] 每个单词的首小写字母转换为对应的大写字母

    Given a string , write a program to title case every first letter of words in string. Input:The firs ...

  5. SSIS 实用表达式部分总结

    下面,列出一些实用的表达式: 1,路径取文件名 RIGHT([FilePath],FINDSTRING(REVERSE([FilePath]),) - ) RIGHT(@[User::FilePath ...

  6. pc端常用导航

    应为经常要写网站,导航部分基本一样,没必要每次都写一遍,下次直接来复制: HTML: <nav> <div class="clearfix container"& ...

  7. 一起学Linux02之Linux系统启动过程

    这个Linux系统启动过程啊,说实话,我认为,刚学习的时候看几遍,了解一下就好.现在的主要任务是用.熟练了之后再来深究这个不急. 下面我就简单地说说吧. Linux系统的启动主要分为下列步骤: 1 内 ...

  8. Sql Server 里的向上取整、向下取整、四舍五入取整的实例!

    http://blog.csdn.net/dxnn520/article/details/8454132 =============================================== ...

  9. 动态求区间K大值(权值线段树)

    我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和 ...

  10. python的defaultdict

    defaultdict是dict的一个子类,接受一个工厂函数作为参数,当访问defaultdict中不存在的key时,会将工厂函数的返回值作为默认的value. class defaultdict(d ...