[51nod1597]有限背包计数问题
你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少
两种方案不同当且仅当存在至少一个数i满足第i种物品使用的数量不同
Input
第一行一个正整数n
1<=n<=10^5
Output
一个非负整数表示答案,你需要将答案对23333333取模
首先我们可以发现,令S=sqrt(n),那么对于大小大于S的物品,其实是用不完的,我们可以把他们的数量视为无限个对于大小小于S的物品,我们可以令f[i][j]表示考虑了前i个物品,总大小为j的方案数,那么有:f[i][j]=sum{f[i-1][j-k*i]},0<=k<=i我们在DP的时候,假设当前要计算f[i][j],可以设tmp[v]为当前满足t mod i=v的f[i-1][t]的和然后就可以通过维护tmp数组,轻松计算出f[i][j]了这一步的时间复杂度是O(nsqrt(n))接下来考虑大小大于S的物品我们考虑一个给物品“动态添加大小”的DP:令g[i][j]表示,当前有i个物品,大小总和为j我们可以做的转移是:(1):将所有物品的大小加一 :g[i][j]->g[i][j+i](2):新建一个大小为S+1的物品g[i][j]->g[i+1][j+S+1]可以发现,物品总数最多为n/S个,所有g的第一维的规模是n/S的,所以这一个DP也是O(n*sqrt(n))的于是总复杂度就是O(n*sqrt(n))这道题还有更加优美的算法,可以用多项式黑科技进行推导,可以得到复杂度O(nlogn)的做法,由于出题人能力有限所以这里就不阐述了
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define ll long long
#define ui unsigned int
#define ull unsigned long long
const int maxn=,modd=;
int f[][maxn],g[][maxn],sm[maxn],tmp[maxn];
int i,j,k,n,m,n1; int ra;char rx;
inline int read(){
rx=getchar(),ra=;
while(rx<''||rx>'')rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra;
} #define MOD(x) x-=x>=modd?modd:0
#define UPD(x) x+=x<0?modd:0
int main(){
n=read(),n1=sqrt(n);register int i,j,k; bool now=,pre=;f[][]=;int mod;
for(i=;i<=n1;i++,std::swap(now,pre)){
memset(tmp,,i<<),mod=-;
for(j=,k=-i*i;j<=n;j++,k++){
if(++mod>=i)mod=;
tmp[mod]+=f[pre][j],MOD(tmp[mod]),
f[now][j]=tmp[mod];
if(k>=)tmp[mod]-=f[pre][k],UPD(tmp[mod]);
}
}//printf("n1:%d\n",n1);
//for(i=1;i<=n;i++)printf(" %d",f[pre][i]);puts("");
int n2=n/n1;
bool now1=,pre1=;g[][]=;
for(i=;i<=n2;i++,std::swap(now1,pre1)){
memset(g[now1],,(n1+)<<);
for(j=n1+,k=;j<=n;j++,k++)g[now1][j]=g[pre1][k];
for(j=i;j<=n;j++)g[now1][j]+=g[now1][j-i],MOD(g[now1][j]);
for(j=;j<=n;j++)sm[j]+=g[now1][j],MOD(sm[j]);
}
int ans=f[pre][n]+sm[n];MOD(ans);
for(i=;i<n;i++)ans=(ans+1ll*f[pre][i]*sm[n-i])%modd;
printf("%d\n",ans);
}
[51nod1597]有限背包计数问题的更多相关文章
- 2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)
传送门 dp好题. 我认为原题的描述已经很清楚了: 你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少. 两种方案不同当且仅当存在至少一个数i满足第i种 ...
- 51Nod 有限背包计数问题 题解报告
首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子 但是由于模数不是很兹磁,所以导致nlogn很难写 在这里说一下O(n*sqrt(n))的做法 首先我们 ...
- 51Nod1957 有限背包计数问题
传送门 另一个传送门 这题还挺有意思…… 先贴一波出题人的题解…… (啥你说你看不见?看来你还没过啊,等着A了再看或者乖乖花点头盾好了……) 然后是我的做法……思想都是一样的,只是细节不一样而已…… ...
- 51nod 1597 有限背包计数问题 (背包 分块)
题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...
- 题解 51nod 1597 有限背包计数问题
题目传送门 题目大意 给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数. \(n\le 10^5\) 思路 呜呜呜,傻掉了... 首先想到根号分治,分别考虑 \( ...
- LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- LOJ6089 小Y的背包计数问题(根号优化背包)
Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...
- LOJ6089 小Y的背包计数问题 背包、根号分治
题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...
随机推荐
- JS判断终端
//判断手机终端 if(navigator.userAgent.match(/(iPhone|iPod|Android|ios)/i)) { window.location.href = 'mobil ...
- PHP-无限级分类
给定省市地区数组如下: $area = array( array('id'=>1,'name'=>'安徽','parent'=>'0'), ...
- mintUI配合vue2.0,webpack,vue-cli脚手架从零搭建
步骤说明: 1.确保安装了vue-cli 安装:cnpm install vue-cli -g 验证版本:vue --version 2.生成项目模板: vue init webpack-simple ...
- JAVA本地环境启动OOM问题排查
1.问题描述 每次启动信息报错如下: 2.排查过程 2.1起初怀疑是堆内存不够: 将本地队内存调整由-Xms512M,-Xmx1024M,改成与测试环境相同1536M,还是失败 如上图报错中有noti ...
- Python核心编程--浅拷贝与深拷贝
一.问题引出浅拷贝 首先看下面代码的执行情况: a = [1, 2, 3] print('a = %s' % a) # a = [1, 2, 3] b = a print('b = %s' % b) ...
- C#窗口传值(CSDN实例)
//非模式窗体 相较独立From qform=new Form(); qform.Show(); //模式窗体 子依赖父Form qform=new Form();qform.Show ...
- 【JavaScript 】for 循环进化史
ECMAScript 6已经逐渐普及,经过二十多年的改进,很多功能也有了更成熟的语句,比如 for 循环 这篇博客将介绍一下从最初的 for 循环,到 ES6 的 for-of 等四种遍历方法 先定义 ...
- HashMap与ConcurrentHashMap
从JDK1.2起,就有了HashMap,正如前一篇文章所说,HashMap不是线程安全的,因此多线程操作时需要格外小心. 在JDK1.5中,伟大的Doug Lea给我们带来了concurrent包,从 ...
- celery出现警告或异常的解决方式
做个笔记,记录下使用celery踩过的坑,不定期更新. warnings.warn(CDeprecationWarning(W_PICKLE_DEPRECATED)) 我用的是Flask,所以在Fl ...
- 《深入理解Java虚拟机:JVM高级属性与最佳实践》读书笔记(更新中)
第一章:走进Java 概述 Java技术体系 Java发展史 Java虚拟机发展史 1996年 JDK1.0,出现Sun Classic VM HotSpot VM, 它是 Sun JDK 和 Ope ...