poj1006Biorhythms(同余定理)
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298
本文转自head for better博客,版权归其所有,代码系本人自己编写
问题描述
人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,
人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。
现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,
要求从这一天开始,算出最少再过多少天后三个峰值同时出现。
问题分析
首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时
间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足
S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3
N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。
我们需要求出k1,k2,k3三个非负整数使上面的等式成立。
想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。
根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。
这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。
这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。
依据此解法的算法,时间复杂度可达到O(1)。下面就介绍一下中国剩余定理。
中国剩余定理介绍
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),
七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。
具体解法分三步:
- 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
3.用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。
就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?
中国剩余定理分析
我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。
首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。
有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?
这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。
以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:
- 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
- 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
- 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。
因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:
- n1除以3余2,且是5和7的公倍数。
- n2除以5余3,且是3和7的公倍数。
- n3除以7余2,且是3和5的公倍数。
所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个
除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。
在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,
而是先找一个除以3余1的数,再乘以2。
这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),
也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。
最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?
我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。
道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。
总结
经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:
- 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
- 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。
POJ1006其实不能算是一道编程难题,只是里面用到了剩余定理。
首先说一下数学上的计算。具体的资料可以在网上搜索一下“剩余定理”或者是“韩信点兵”。
因为23、28、33这3个数互质,
那么由剩余定理有:
R1为28*33*a%23==1的最小的正整数(a为正整数),即a=6,R1=5544
R2为23*33*b%28==1的最小的正整数(b为正整数),即b=19,R2=14421
R3为23*28*c%33==1的最小的正整数(c为正整数),即c=2,R3=1288
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; int main()
{
int p, e, i, d;
int test = ;
while (scanf("%d%d%d%d", &p, &e, &i, &d) != EOF)
{
if (p == - && e == - && i == - && d == -)
break;
int sum = ( * p + e * + * i) % ;
while (sum <= d)
sum += ;
printf("Case %d: the next triple peak occurs in %d days.\n", test++, sum - d);
}
return ;
}
poj1006Biorhythms(同余定理)的更多相关文章
- Light oj 1214-Large Division (同余定理)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1214 题意很好懂,同余定理的运用,要是A数被B数整除,那么A%B等于0.而A很大,那我 ...
- 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- hdu 4704 同余定理+普通快速幂
此题往后推几步就可找到规律,从1开始,答案分别是1,2,4,8,16.... 这样就可以知道,题目的目的是求2^n%Mod的结果.....此时想,应该会想到快速幂...然后接着会发现,由于n的值过大, ...
- OJ随笔——【1088-N!】——同余定理
题目如下: Description 请求N!(N<=10000),输出结果对10007取余输入每行一个整数n,遇到-1结束.输出每行一个整数,为对应n的运算结果. Sample Input ...
- [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11978 A ...
- 算法训练 K好数 数位DP+同余定理
思路:d(i,j)表示以i开头,长度为j的K好数的个数,转移方程就是 for(int u = 0; u < k; ++u) { int x = abs(i - u); if(x == 1) co ...
- poj1061-青蛙的约会-(贝祖定理+扩展欧几里得定理+同余定理)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions:132162 Accepted: 29199 Descripti ...
- hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU1212 Big Number 【同余定理】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
随机推荐
- mac系统及xcode使用的SVN客户端安装升级
当前的SVN版本已经升级到1.8.x了,但mac系统自带的以及xcode使用的SVN客户端版本没有跟着升级,还是1.6.x的版本.为了解决隐藏目录.svn只在根目录下存在的情况,至少要升级到1.7.x ...
- 将String转化成Stream,将Stream转换成String
using System;using System.IO;using System.Text;namespace CSharpConvertString2Stream{ class Progr ...
- 查看Linux版本信息
如何查看Linux系统使用的版本信息呢? 下面这篇文章收集.整理了一些常见的查看Linux系统版本的方法.由于手头只有Oracle Linux.Centos Linux.Redhat Linux三个版 ...
- MongoDB学习笔记~以匿名对象做为查询参数,方便查询子对象
回到目录 对于MongoDB的封装还在继续,对于不断追求简单的编程还在继续,对于喜欢代码的那么感觉,还在继续... 当你的mongo数据表里有子对象时,尤其是列表对象时,使用官方的驱动很是不爽,要记得 ...
- SQL Server 2008 R2——软件创建月表时同时创建一个触发器
=================================版权声明================================= 版权声明:原创文章 谢绝转载 请通过右侧公告中的“联系邮 ...
- 安卓SeekBar
public class Speak extends Fragment implements OnSeekBarChangeListener { private SeekBar bar1; priva ...
- Windows10 会不会成为微软的新起点?
Because if you change the way you see the world, you can change the world you see. 如果你改变看世界的方式,你就能改变 ...
- echo命令详解
echo: echo [-neE] [arg ...] echo会将输入的字符串送往标准输出.输出的字符串间以空白字符隔开, 并在最后加上换行号. Options: -n 不在最后自动换行 -e 使用 ...
- 【转载】Web移动端Fixed布局的解决方案
特别声明:本文转载于EFE的<Web移动端Fixed布局的解决方案>.如需转载,烦请注明原文出处:http://efe.baidu.com/blog/mobile-fixed-layout ...
- Fast RCNN 训练自己的数据集(3训练和检测)
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fas ...