UVA 1515 Pool construction 最大流跑最小割
Pool construction
You are working for the International Company for Pool Construction, a construction company which
specializes in building swimming pools. A new client wants to build several new pool areas.
A pool area is a rectangular grid of w × h square patches, consisting of zero or more (possibly
disconnected) pools. A pool consists of one or multiple connected hole patches, which will later be
filled with water. In the beginning, you start with a piece of land where each patch is either a hole in
the ground (’.’) or flat grass (’#’). In order to transform this land into a pool area, you must adhere
to the following:
• You can leave a patch as it is. This costs nothing.
• If the patch is grass in the beginning, you can dig a hole there. This costs d EUR.
• If the patch is a hole in the beginning, you can fill the hole and put grass on top. This costs f
EUR.
• You must place special boundary elements along each edge running between a final grass patch
and a final hole patch, to ensure that water does not leak from the pool. This costs b EUR per
boundary element.
• The outermost rows and columns of the pool area must always be grass.
You are given the task of calculating the cost of the cheapest possible pool area given the layout of
the existing piece of land.
Input
On the first line a positive integer: the number of test cases, at most 100. After that per test case:
• one line with two integers w and h (2 ≤ w, h ≤ 50): the width and height of the building site.
• one line with three integers d, f and b (1 ≤ d, f, b ≤ 10000): the costs for digging a new hole,
filling an existing hole, and building a boundary element between a pool and grass patch.
• h lines of w characters each, denoting the layout of the original building site.
Output
Per test case:
• one line with an integer: the cost of building the cheapest possible pool area from the original
piece of land.
Sample Input
3
3 3
5 5 1
#.#
#.#
###
5 4
1 8 1
#..##
##.##
#.#.#
#####
2 2
27 11 11
#.
.#
Sample Output
9
27
22
题意:
给你一个图,
草地用#号表示,洞用 . 表示.你可以吧草改成洞,这样每格话费d,也可以把洞填上草,话费f.最后还要在草与洞之间修上围栏每边话费b.
整个图边缘都必须是草.
题解:
最小割
S-草 (边缘的草权值为无穷否则为d,表示吧这条边切断的花费)
洞-T (不在边缘的洞与其T相连,权值为f)
相邻的洞与草之间连双向边, 表示洞变草,草变洞的花费
跑最大流算法求最小割就好了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<queue>
using namespace std;
const int N = 1e6+, M = , mod = 1e9+;
typedef long long ll;
//不同为1,相同为0 int n,m,b,F,ans,D,S=,T=;
char mp[][];
int ss[][] = {,,,};
int check(int x,int y) {
if(x<||y<||x>n||y>m) return ;
return ;
}
namespace NetFlow
{
const int MAXN=+,MAXM=,inf=1e9;
struct Edge
{
int v,c,f,nx;
Edge() {}
Edge(int v,int c,int f,int nx):v(v),c(c),f(f),nx(nx) {}
} E[MAXM];
int G[MAXN],cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN],N,sz;
void init(int _n)
{
N=_n,sz=; memset(G,-,sizeof(G[])*N);
}
void add(int u,int v,int c)
{
E[sz]=Edge(v,c,,G[u]); G[u]=sz++;
E[sz]=Edge(u,,,G[v]); G[v]=sz++;
swap(u,v);
E[sz]=Edge(v,c,,G[u]); G[u]=sz++;
E[sz]=Edge(u,,,G[v]); G[v]=sz++;
}
int ISAP(int S,int T)
{//S -> T
int maxflow=,aug=inf,flag=false,u,v;
for (int i=;i<N;++i)cur[i]=G[i],gap[i]=dis[i]=;
for (gap[S]=N,u=pre[S]=S;dis[S]<N;flag=false)
{
for (int &it=cur[u];~it;it=E[it].nx)
{
if (E[it].c>E[it].f&&dis[u]==dis[v=E[it].v]+)
{
if (aug>E[it].c-E[it].f) aug=E[it].c-E[it].f;
pre[v]=u,u=v; flag=true;
if (u==T)
{
for (maxflow+=aug;u!=S;)
{
E[cur[u=pre[u]]].f+=aug;
E[cur[u]^].f-=aug;
}
aug=inf;
}
break;
}
}
if (flag) continue;
int mx=N;
for (int it=G[u];~it;it=E[it].nx)
{
if (E[it].c>E[it].f&&dis[E[it].v]<mx)
{
mx=dis[E[it].v]; cur[u]=it;
}
}
if ((--gap[dis[u]])==) break;
++gap[dis[u]=mx+]; u=pre[u];
}
return maxflow;
}
bool bfs(int S,int T)
{
static int Q[MAXN]; memset(dis,-,sizeof(dis[])*N);
dis[S]=; Q[]=S;
for (int h=,t=,u,v,it;h<t;++h)
{
for (u=Q[h],it=G[u];~it;it=E[it].nx)
{
if (dis[v=E[it].v]==-&&E[it].c>E[it].f)
{
dis[v]=dis[u]+; Q[t++]=v;
}
}
}
return dis[T]!=-;
}
int dfs(int u,int T,int low)
{
if (u==T) return low;
int ret=,tmp,v;
for (int &it=cur[u];~it&&ret<low;it=E[it].nx)
{
if (dis[v=E[it].v]==dis[u]+&&E[it].c>E[it].f)
{
if (tmp=dfs(v,T,min(low-ret,E[it].c-E[it].f)))
{
ret+=tmp; E[it].f+=tmp; E[it^].f-=tmp;
}
}
}
if (!ret) dis[u]=-; return ret;
}
int dinic(int S,int T)
{
int maxflow=,tmp;
while (bfs(S,T))
{
memcpy(cur,G,sizeof(G[])*N);
while (tmp=dfs(S,T,inf)) maxflow+=tmp;
}
return maxflow;
}
}
using namespace NetFlow; void Links() {
for(int i=;i<=m;i++)
add(S,i,inf);
for(int i=;i<=m;i++)
add(S,(n-)*m+i,inf);
for(int i=;i<n;i++)
add(S,(i-)*m+,inf);
for(int i=;i<n;i++)
add(S,i*m,inf);
for(int i=;i<n;i++) {
for(int j=;j<m;j++) {
if(mp[i][j]=='#') add(S,(i-)*m+j,D);
else add((i-)*m+j,T,F);
}
}
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
for(int k=;k<;k++) {
int xx = i+ss[k][];
int yy = j+ss[k][];
if(check(xx,yy)) {
add((i-)*m+j,(xx-)*m+yy,b);
}
}
}
}
ans+=dinic(S,T);
}
int main () {
int GG = ;
scanf("%d",&GG);
while(GG--) {
ans = ;
scanf("%d%d%d%d%d",&m,&n,&D,&F,&b);
for(int i=;i<=n;i++){
getchar();
for(int j=;j<=m;j++) scanf("%c",&mp[i][j]);
}
for(int i=;i<=m;i++)
if(mp[][i]=='.') ans+=F,mp[][i] = '#';
for(int i=;i<=m;i++)
if(mp[n][i]=='.') ans+=F,mp[n][i] = '#';
for(int i=;i<=n;i++)
if(mp[i][]=='.') ans+=F,mp[i][] = '#';
for(int i=;i<=n;i++)
if(mp[i][m]=='.') ans+=F,mp[i][m] = '#';
init();
// cout<<ans<<endl;
Links();
printf("%d\n",ans);
}
return ;
}
UVA 1515 Pool construction 最大流跑最小割的更多相关文章
- UVa 1515 - Pool construction(最小割)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 【uva 1515】Pool construction(图论--网络流最小割 模型题)
题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解...... ...
- Uva -1515 Pool construction(最小割)
输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 首先把最外一圈的洞变成草,并累加花费. 增加一个源点和一个汇点,源 ...
- UVA 1515 Pool construction 水塘(最大流,经典)
题意: 给一个h*w的矩阵,每个格子中是'#'和'.'两个符号之一,分别代表草和洞.现在要将洞给围起来(将草和洞分离),每条边需花费b元(即将一个洞包起来需要4边,将2个连续的洞包起来需要6边,省了2 ...
- UVA 10480 Sabotage (网络流,最大流,最小割)
UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- UVa 1660 Cable TV Network (最大流,最小割)
题意:求一个无向图的点连通度. 析:把每个点拆成两个,然后中间连接一个容量为1的边,然后固定一个源点,枚举每个汇点,最小割. 代码如下: #pragma comment(linker, "/ ...
- BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 23822 Solved: 6012[Submit][ ...
- CodeForces E. Goods transportation【最大流+dp最小割】
妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...
随机推荐
- shp系列(七)——利用C++进行Shx文件的写(创建)
之前介绍了Shp文件和Dbf的写(创建),最后来介绍一下Shx文件的写(创建).Shx文件是三者之中最简单的一个,原因有两个:第一是Shx文件的头文件与Shp文件的头文件几乎一样(除了FileLeng ...
- BZOJ 4262 线段树+期望
思路: 把询问离线下来,查询max和查询min相似,现在只考虑查询max 令sum[l,r,x]表示l到r内的数为左端点,x为右端点的区间询问的答案 那么询问就是sun[l1,r1,r2]-sum[l ...
- Hadoop MapReduce编程 API入门系列之多个Job迭代式MapReduce运行(十二)
推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...
- Codeforces Round #450
Find Extra One Solution Position in Fraction Solution Remove Extra One f[i]表示删掉i能增加的record数目 从左到右处理, ...
- go结构,结构嵌套,接口,指针的测试和结论
package main import ( "fmt" ) //T是M1接受者,不是实现M2接受者 //*T是M1接受者,也是M2的接受者 //所以T对象不可以赋值给接口对象.*T ...
- [oracle] 递归追溯完整部门名称 函数
create or replace function fn_DeptWholeName2(objectid in number) return nvarchar2 is wholename nvarc ...
- wp版笔记本应用源码
今天在那个WP教程网看到了一个不错的项目,简单的记事本,主要是用到的独立存储文件的操作,TimePicker和DatePicker的是用,数据绑定,界面的参考的chanraycode的,主要是锻炼自己 ...
- Ubuntu14.04引导菜单修复
原文链接:http://www.metsky.com/archives/636.html 独立分区下的Ubuntu引导菜单修复有点麻烦,执行挂载等命令时要小心检查,修复此类引导,首先需要确保当前系统和 ...
- 杭电 2095 find your present (2)【位运算 异或】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2095 解题思路:因为只有我们要求的那个数出现的次数为奇数,所以可以用位运算来做,两次异或同一个数最后结 ...
- AngularJS指令进阶 -- ngModelController详解
大家都知道AngularJS中的指令是其尤为复杂的一个部分,但是这也是其比较好玩的地方.这篇文章我们就来说一说如何在我们自定义的指令中,利用ngModel的controller来做双向数据绑定,本文对 ...