Pool construction

You are working for the International Company for Pool Construction, a construction company which
specializes in building swimming pools. A new client wants to build several new pool areas.
A pool area is a rectangular grid of w × h square patches, consisting of zero or more (possibly
disconnected) pools. A pool consists of one or multiple connected hole patches, which will later be
filled with water. In the beginning, you start with a piece of land where each patch is either a hole in
the ground (’.’) or flat grass (’#’). In order to transform this land into a pool area, you must adhere
to the following:
• You can leave a patch as it is. This costs nothing.
• If the patch is grass in the beginning, you can dig a hole there. This costs d EUR.
• If the patch is a hole in the beginning, you can fill the hole and put grass on top. This costs f
EUR.
• You must place special boundary elements along each edge running between a final grass patch
and a final hole patch, to ensure that water does not leak from the pool. This costs b EUR per
boundary element.
• The outermost rows and columns of the pool area must always be grass.
You are given the task of calculating the cost of the cheapest possible pool area given the layout of
the existing piece of land.
Input
On the first line a positive integer: the number of test cases, at most 100. After that per test case:
• one line with two integers w and h (2 ≤ w, h ≤ 50): the width and height of the building site.
• one line with three integers d, f and b (1 ≤ d, f, b ≤ 10000): the costs for digging a new hole,
filling an existing hole, and building a boundary element between a pool and grass patch.
• h lines of w characters each, denoting the layout of the original building site.
Output
Per test case:
• one line with an integer: the cost of building the cheapest possible pool area from the original
piece of land.
Sample Input
3
3 3
5 5 1
#.#
#.#
###
5 4
1 8 1
#..##
##.##
#.#.#
#####
2 2
27 11 11
#.
.#
Sample Output
9
27
22

题意:

  给你一个图,

  草地用#号表示,洞用 . 表示.你可以吧草改成洞,这样每格话费d,也可以把洞填上草,话费f.最后还要在草与洞之间修上围栏每边话费b.

  整个图边缘都必须是草.

题解:

  最小割

  S-草 (边缘的草权值为无穷否则为d,表示吧这条边切断的花费)

  洞-T (不在边缘的洞与其T相连,权值为f)

  相邻的洞与草之间连双向边, 表示洞变草,草变洞的花费

  跑最大流算法求最小割就好了

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<queue>
using namespace std;
const int N = 1e6+, M = , mod = 1e9+;
typedef long long ll;
//不同为1,相同为0 int n,m,b,F,ans,D,S=,T=;
char mp[][];
int ss[][] = {,,,};
int check(int x,int y) {
if(x<||y<||x>n||y>m) return ;
return ;
}
namespace NetFlow
{
const int MAXN=+,MAXM=,inf=1e9;
struct Edge
{
int v,c,f,nx;
Edge() {}
Edge(int v,int c,int f,int nx):v(v),c(c),f(f),nx(nx) {}
} E[MAXM];
int G[MAXN],cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN],N,sz;
void init(int _n)
{
N=_n,sz=; memset(G,-,sizeof(G[])*N);
}
void add(int u,int v,int c)
{
E[sz]=Edge(v,c,,G[u]); G[u]=sz++;
E[sz]=Edge(u,,,G[v]); G[v]=sz++;
swap(u,v);
E[sz]=Edge(v,c,,G[u]); G[u]=sz++;
E[sz]=Edge(u,,,G[v]); G[v]=sz++;
}
int ISAP(int S,int T)
{//S -> T
int maxflow=,aug=inf,flag=false,u,v;
for (int i=;i<N;++i)cur[i]=G[i],gap[i]=dis[i]=;
for (gap[S]=N,u=pre[S]=S;dis[S]<N;flag=false)
{
for (int &it=cur[u];~it;it=E[it].nx)
{
if (E[it].c>E[it].f&&dis[u]==dis[v=E[it].v]+)
{
if (aug>E[it].c-E[it].f) aug=E[it].c-E[it].f;
pre[v]=u,u=v; flag=true;
if (u==T)
{
for (maxflow+=aug;u!=S;)
{
E[cur[u=pre[u]]].f+=aug;
E[cur[u]^].f-=aug;
}
aug=inf;
}
break;
}
}
if (flag) continue;
int mx=N;
for (int it=G[u];~it;it=E[it].nx)
{
if (E[it].c>E[it].f&&dis[E[it].v]<mx)
{
mx=dis[E[it].v]; cur[u]=it;
}
}
if ((--gap[dis[u]])==) break;
++gap[dis[u]=mx+]; u=pre[u];
}
return maxflow;
}
bool bfs(int S,int T)
{
static int Q[MAXN]; memset(dis,-,sizeof(dis[])*N);
dis[S]=; Q[]=S;
for (int h=,t=,u,v,it;h<t;++h)
{
for (u=Q[h],it=G[u];~it;it=E[it].nx)
{
if (dis[v=E[it].v]==-&&E[it].c>E[it].f)
{
dis[v]=dis[u]+; Q[t++]=v;
}
}
}
return dis[T]!=-;
}
int dfs(int u,int T,int low)
{
if (u==T) return low;
int ret=,tmp,v;
for (int &it=cur[u];~it&&ret<low;it=E[it].nx)
{
if (dis[v=E[it].v]==dis[u]+&&E[it].c>E[it].f)
{
if (tmp=dfs(v,T,min(low-ret,E[it].c-E[it].f)))
{
ret+=tmp; E[it].f+=tmp; E[it^].f-=tmp;
}
}
}
if (!ret) dis[u]=-; return ret;
}
int dinic(int S,int T)
{
int maxflow=,tmp;
while (bfs(S,T))
{
memcpy(cur,G,sizeof(G[])*N);
while (tmp=dfs(S,T,inf)) maxflow+=tmp;
}
return maxflow;
}
}
using namespace NetFlow; void Links() {
for(int i=;i<=m;i++)
add(S,i,inf);
for(int i=;i<=m;i++)
add(S,(n-)*m+i,inf);
for(int i=;i<n;i++)
add(S,(i-)*m+,inf);
for(int i=;i<n;i++)
add(S,i*m,inf);
for(int i=;i<n;i++) {
for(int j=;j<m;j++) {
if(mp[i][j]=='#') add(S,(i-)*m+j,D);
else add((i-)*m+j,T,F);
}
}
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
for(int k=;k<;k++) {
int xx = i+ss[k][];
int yy = j+ss[k][];
if(check(xx,yy)) {
add((i-)*m+j,(xx-)*m+yy,b);
}
}
}
}
ans+=dinic(S,T);
}
int main () {
int GG = ;
scanf("%d",&GG);
while(GG--) {
ans = ;
scanf("%d%d%d%d%d",&m,&n,&D,&F,&b);
for(int i=;i<=n;i++){
getchar();
for(int j=;j<=m;j++) scanf("%c",&mp[i][j]);
}
for(int i=;i<=m;i++)
if(mp[][i]=='.') ans+=F,mp[][i] = '#';
for(int i=;i<=m;i++)
if(mp[n][i]=='.') ans+=F,mp[n][i] = '#';
for(int i=;i<=n;i++)
if(mp[i][]=='.') ans+=F,mp[i][] = '#';
for(int i=;i<=n;i++)
if(mp[i][m]=='.') ans+=F,mp[i][m] = '#';
init();
// cout<<ans<<endl;
Links();
printf("%d\n",ans);
}
return ;
}

UVA 1515 Pool construction 最大流跑最小割的更多相关文章

  1. UVa 1515 - Pool construction(最小割)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. 【uva 1515】Pool construction(图论--网络流最小割 模型题)

    题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解...... ...

  3. Uva -1515 Pool construction(最小割)

    输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 首先把最外一圈的洞变成草,并累加花费. 增加一个源点和一个汇点,源 ...

  4. UVA 1515 Pool construction 水塘(最大流,经典)

    题意: 给一个h*w的矩阵,每个格子中是'#'和'.'两个符号之一,分别代表草和洞.现在要将洞给围起来(将草和洞分离),每条边需花费b元(即将一个洞包起来需要4边,将2个连续的洞包起来需要6边,省了2 ...

  5. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  6. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  7. UVa 1660 Cable TV Network (最大流,最小割)

    题意:求一个无向图的点连通度. 析:把每个点拆成两个,然后中间连接一个容量为1的边,然后固定一个源点,枚举每个汇点,最小割. 代码如下: #pragma comment(linker, "/ ...

  8. BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 23822  Solved: 6012[Submit][ ...

  9. CodeForces E. Goods transportation【最大流+dp最小割】

    妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...

随机推荐

  1. POJ-3061 Subsequence 二分或尺取

    题面 题意:给你一个长度为n(n<100000)的数组,让你找到一个最短的连续子序列,使得子序列的和>=m  (m<1e9) 题解: 1 显然我们我们可以二分答案,然后利用前缀和判断 ...

  2. Scrapy中的核心工作流程以及POST请求

    五大核心组件工作流程 post请求发送 递归爬取 五大核心组件工作流程 引擎(Scrapy)用来处理整个系统的数据流处理, 触发事务(框架核心) 调度器(Scheduler)用来接受引擎发过来的请求, ...

  3. CMD-echo

    echo 打印 <> echo ^< echo ^> echo 换行 echo 你好@echo.世界. echo 多行打印 > log.log 此时 > 无效.(我 ...

  4. Android Studio复制项目 两个App之间不覆盖安装操作步骤

    步骤一:修改包名 第五步注意:不能以数字等作为包名的开头. 步骤二:修改清单文件里面的包名 第八步注意:如果报红,从新引入新的包名下的Mainactivity类. 步骤三:修改Gradle Scrip ...

  5. 几个概念:x86、x86-64和IA-32、IA-64

    最近在学习操作系统方面的知识,学习操作系统难免要和CPU打交道,虽然现在CPU和操作系统不像计算机发展初期一样是绑定在一起的,但是大家都知道操作系统和CPU Architecture的联系是很紧密的, ...

  6. vue 子组件向父组件传值通信

    父组件 子组件 子组件用this.$emit

  7. go基础笔记

    1.slice:作为参数传递时,传递的是地址,当append时,在新的内存地址分配数据,但是没有返回给原的slice,只能通过返回值的方式赋值给slice2.func(a []int):传递,可以3. ...

  8. Jetty容器配置https

    Configuring the Jetty Container as a Https Connector Jetty版本:9.2.22.v20170606 Pom.xml <?xml versi ...

  9. gcc和g++的区别和联系

    gcc和g++都是GNU(一个组织)的编译器. 1.对于.c后缀的文件,gcc把它当做是C程序:g++当做是C++程序: 2.对于.cpp后缀的文件,gcc和g++都会当做c++程序. 3.编译阶段, ...

  10. linux中errno使用(转)

    当linux中的C api函数发生异常时,一般会将errno变量(需include errno.h)赋一个整数值,不同的值表示不同的含义,可以通过查看该值推测出错的原因,在实际编程中用这一招解决了不少 ...