Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 36717   Accepted: 13438

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms
comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N,
M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to
F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.

Line 1 of each farm: Three space-separated integers respectively: N,
M
, and W

Lines 2..M+1 of each farm: Three space-separated numbers (S,
E
, T) that describe, respectively: a bidirectional path between
S
and E that requires T seconds to traverse. Two fields might be connected by more than one path.

Lines M+2..M+W+1 of each farm: Three space-separated numbers (S,
E, T) that describe, respectively: A one way path from S to
E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.

For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

70ms

#include<iostream>  //79ms
#include<cstdio>
#include<cstring>
#include<cmath>
#define INF 10000000 using namespace std; struct node
{
int u,v,w;
} edge[5500];
int low[5500];
int n,m,z;
int num=0;
int Bellman()
{
for(int i=0; i<=n; i++)
low[i]=INF; for(int i=0; i<n-1; i++)
{
int flag=0;
for(int j=0; j<num; j++)
{
if(low[edge[j].u]+edge[j].w<low[edge[j].v])
{
low[edge[j].v]=low[edge[j].u]+edge[j].w;
flag=1;
}
}
if(flag==0) //存在负权回路
break;
} for(int j=0; j<num; j++) //推断负权回路
{
if(low[edge[j].u]+edge[j].w<low[edge[j].v])
return 1;
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&z);
int a,b,c;
num=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=c; edge[num].u=b;
edge[num].v=a;
edge[num++].w=c;
} for(int i=1; i<=z; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=-c;
}
if(Bellman())
printf("YES\n");
else
printf("NO\n");
}
}

700ms

#include<iostream>  //挨个点遍历
#include<cstdio>
#include<cstring>
#include<cmath>
#define INF 0x3f3f3f3f using namespace std; struct node
{
int u,v,w;
} edge[5500];
int low[550];
int n,m,z;
int num=0;
int Bellman(int u0)
{
for(int i=0; i<=n; i++)
low[i]=INF;
low[u0]=0;
for(int i=0; i<n; i++) //递推n次,让其构成环来推断
{
int flag=0;
for(int j=0; j<num; j++)
{
if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v])
{
low[edge[j].v]=low[edge[j].u]+edge[j].w;
flag=1;
}
}
if(flag==0) //存在负权回路(降低时间)
break;
}
if(low[u0]<0)
return 1;
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&z);
int a,b,c;
num=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=c; edge[num].u=b;
edge[num].v=a;
edge[num++].w=c;
} for(int i=1; i<=z; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=-c;
}
int biao=1;
for(int i=1; i<=n; i++)
{
if(Bellman(i))
{
printf("YES\n");
biao=0;
break;
}
}
if(biao)
printf("NO\n");
}
}
/*
780ms
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define INF 0x3f3f3f3f using namespace std; struct node
{
int u,v,w;
} edge[5500];
int low[5500];
int n,m,z;
int num=0;
int Bellman(int u0)
{
for(int i=0; i<=n; i++)
low[i]=INF; low[u0]=0; //初始化
for(int i=0; i<n-1; i++) //n-1次
{
int flag=0;
for(int j=0; j<num; j++)
{
if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v]) //不同点
{ //存在low[edge[j].u]!=INF,就必须有low[u0]=0;初始化
low[edge[j].v]=low[edge[j].u]+edge[j].w;
flag=1;
}
}
if(flag==0) //存在负权回路
break;
} for(int j=0; j<num; j++)
{
if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v])
return 1;
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&z);
int a,b,c;
num=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=c; edge[num].u=b;
edge[num].v=a;
edge[num++].w=c;
} for(int i=1; i<=z; i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[num].u=a;
edge[num].v=b;
edge[num++].w=-c;
}
int biao=1;
for(int i=1; i<=n; i++)
{
if(Bellman(i))
{
printf("YES\n");
biao=0;
break;
}
}
if(biao)
printf("NO\n");
}
}
*/

poj 3259 bellman最短路推断有无负权回路的更多相关文章

  1. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  2. UVA11090 Going in Cycle!! (二分+SPFA推断有无负权)

    Problem G: Going in Cycle!! Input: standard input Output: standard output You are given a weighted d ...

  3. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  4. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  5. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  6. Spfa 求含负权边的最短路 + 判断是否存在负权回路

    在Bellman-Ford算法之后,我们总算迎来了spfa算法,其实就如同堆优化Dijkstra算法之于朴素版Dijkstra算法,spfa算法仅仅是对Bellman-Ford算法的一种优化,但是在形 ...

  7. ZOJ 3391 Haunted Graveyard(最短路负权回路)题解

    题意:好长...从(0,0)走到(w-1,h-1),墓碑不能走,走到传送门只能进去不能走到其他地方,经过传送门时间会变化w(可能为负),其他地方都能上下左右走.如果能无限返老还童输出Never,走不到 ...

  8. Bellman-ford算法与SPFA算法思想详解及判负权环(负权回路)

    我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借 ...

  9. bellman-ford(可判负权回路+记录路径)

    #include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define ...

随机推荐

  1. poi判断一行是隐藏的getZeroHeight()

    poi判断一行是隐藏的 getZeroHeight() boolean isZeroHeight = row.getZeroHeight(); if(isZeroHeight){ // 如果为隐藏行就 ...

  2. VC 获取控制台窗体的句柄(hWnd)

    在Windows中,句柄是一个系统内部数据结构的引用. 比如当你操作一个窗体.或说是一个Delphi窗体时,系统会给你一个该窗体的句柄,系统会通知你:你正在操作142号窗体.就此你的应用程序就能要求系 ...

  3. openssl之EVP系列之6---EVP_Encrypt系列函数编程架构及样例

    openssl之EVP系列之6---EVP_Encrypt系列函数编程架构及样例     ---依据openssl doc/crypto/EVP_EncryptInit.pod和doc/ssleay. ...

  4. Toast分析——实现自己的Toast

    android 4.0以后,新增了一个功能:关闭某个应用发出的通知.Toast等.详细操作为:打开应用安装列表.找到要屏蔽的应用(长按通知,点击弹出的"应用信息",就可以跳到应用信 ...

  5. Oracle 中UNDO与REDO的差别具体解释

    一 为了更清楚的看出2者差别,请看下表:                                               UNDO                             ...

  6. Mysql中You can't specify target table for update in FROM clause错误的意思是说,不能先select出同一表中的某些值,再update这个表(在同一语句中)。

    将select出的结果再通过中间表select一遍,这样就规避了错误.注意,这个问题只出现于mysql,mssql和oracle不会出现此问题. mysql中You can't specify tar ...

  7. 2016.02.25,英语,《Vocabulary Builder》Unit 02

    ag:来自拉丁语do.go.lead.drive,an agenda是要做事情的清单,an agent是代表他们做事的人,同时也是为他人做事的机构.拉丁语litigare包括词根lit,即lawsui ...

  8. 广东工业大学2016校赛决赛-网络赛 1169 Problem A: Krito的讨伐 优先队列

    Problem A: Krito的讨伐 Description Krito终于干掉了99层的boss,来到了第100层.第100层可以表示成一颗树,这棵树有n个节点(编号从0到n-1),树上每一个节点 ...

  9. 英语发音规则---Q字母

    英语发音规则---Q字母 一.总结 一句话总结: 1.Q/que发[k]音? Iraq [ɪ'rɑ:k] n. 伊拉克 cheque [tʃek] n. 支票 2.Qu-发[kw]? quality ...

  10. SQL Server 分割字符串转列

    CREATE FUNCTION dbo.sf_DS_SplitNVarchar ( @strValues nvarchar(4000) ) RETURNS @tblStrList TABLE (id ...