题目链接:

problem=1070">LightOJ 1070 Algebraic Problem

题意:已知a+b和ab的值求a^n+b^n。结果模2^64。

思路:

1.找递推式

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

得到递推式之后就是矩阵高速幂了

注意:模2^64,定义成unsigned long long 类型,由于无符号类型超过最大范围的数与该数%最大范围 的效果是一样的。

AC代码:

#include<stdio.h>
#include<string.h>
#define LL unsigned long long struct Matrix {
LL m[10][10];
};
LL n;
Matrix geti(LL n) {
LL i;
Matrix b;
memset(b.m,0,sizeof b.m);
for(i=0;i<2;i++)
b.m[i][i]=1;
return b;
} Matrix matrixmul(Matrix a,Matrix b) {
LL i,j,k;
Matrix c;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
c.m[i][j]=0.0;
for(k=0;k<2;k++) {
c.m[i][j]+=(a.m[i][k]*b.m[k][j]);
}
}
}
return c;
} Matrix quickpow(Matrix a,LL p) {
Matrix m=a;
Matrix b=geti(n);
while(p) {
if(p%2)
b=matrixmul(b,m);
p/=2;
m=matrixmul(m,m);
}
return b;
} int main() {
LL t;
LL p,q;
int cas=1;
Matrix pp,init,ans;
//printf("%llu\n",kmod);
scanf("%llu",&t);
while(t--) {
scanf("%llu %llu %llu",&p,&q,&n);
memset(pp.m,0,sizeof pp);
pp.m[0][0]=p;
pp.m[0][1]=1;
pp.m[1][0]=-q;
pp.m[1][1]=0; init.m[0][0]=p;
init.m[0][1]=2;
init.m[1][0]=0;
init.m[1][1]=0; printf("Case %d: ",cas++);
if(n==0){
printf("%llu\n",init.m[0][1]);
}
else if(n==1){
printf("%llu\n",init.m[0][0]);
}
else {
ans=quickpow(pp,n-1);
ans=matrixmul(init,ans);
printf("%llu\n",ans.m[0][0]);
}
}
return 0;
}
/* */

LightOJ 1070 Algebraic Problem (推导+矩阵高速幂)的更多相关文章

  1. LightOJ 1070 - Algebraic Problem 推导+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1070 思路:\({(a+b)}^n =(a+b){(a+b)}^{n-1} \) \(( ...

  2. LightOJ 1070 Algebraic Problem:矩阵快速幂 + 数学推导

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD ...

  3. LightOJ 1070 - Algebraic Problem 矩阵高速幂

    题链:http://lightoj.com/volume_showproblem.php?problem=1070 1070 - Algebraic Problem PDF (English) Sta ...

  4. HDU 1757 A Simple Math Problem(矩阵高速幂)

    题目地址:HDU 1757 最终会构造矩阵了.事实上也不难,仅仅怪自己笨..= =! f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 ...

  5. hdu 1757 A Simple Math Problem (矩阵高速幂)

    和这一题构造的矩阵的方法同样. 须要注意的是.题目中a0~a9 与矩阵相乘的顺序. #include <iostream> #include <cstdio> #include ...

  6. LightOJ - 1132 Summing up Powers 矩阵高速幂

    题目大意:求(1^K + 2^K + 3K + - + N^K) % 2^32 解题思路: 借用别人的图 能够先打表,求出Cnm,用杨辉三角能够高速得到 #include<cstdio> ...

  7. HDU 2256 Problem of Precision(矩阵高速幂)

    题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...

  8. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  9. HDOJ 4686 Arc of Dream 矩阵高速幂

    矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/ ...

随机推荐

  1. 泪奔,配好了bioconductor环境

    最近因为极度忙,没有写总结.今天补一下总结. 今天完成关静最后给的大project这个作业来说,结合自己的研究方向是个让我纠结一周多的事.好在找到了对应的研究内容. R的书目前还是很多的.R我一开始觉 ...

  2. #p-complete原来比np更难

    转载一下豆瓣的一个不知名的朋友的介绍: NP是指多项式时间内验证其解是否正确.比如: 我们给一个0-1背包的解,就可以在多项式时间内验证是否满足条件.至于是否能找到 满足条件的解,这在NP复杂度里没有 ...

  3. 模拟select样式,自定义下拉列表为树结构

    效果图如下: 首先,需要用到的库jQuery,zTree(官网API:http://www.treejs.cn/v3/api.php) 注意:因为zTree是基于jQuery的,所以应该先引入jQue ...

  4. angularjs 学习理解

    1AngularJS 是一个 JavaScript 框架.它是一个以 JavaScript 编写的库. 2 ng-app 指令定义一个 AngularJS 应用程序.ng-model 指令把元素值(比 ...

  5. Passpoint R1

    Passpoint R1 自从 Android 6.0 支持从网络下载包含配置文件和凭据信息的特殊文件来配置 Passpoint R1(第 1 版)凭据,Android 就一直支持 Passpoint ...

  6. php实现自动加载类

    PHP 实现自动加载类:

  7. 题解 P1531 【I Hate It】

    这道题明明是裸的线段树,蒟蒻却80分了五六次... ------------ 根据题意,显然是维护一棵单点修改区间查询的线段树,于是直接套区间修改的代码... 结构体,即为树上的节点. struct ...

  8. Maven的SSH搭建以及部署

    本人有点傻,研究Maven研究了有一段时间,刚刚有些入门,记录下来方便以后使用 工作环境:jdk7 myeclipse10 maven3.1.1 1 下载maven3.1.1 http://maven ...

  9. sql暂时表的创建

    create table #simple  /*仅仅对当前用户有效.其它用户无法使用,断掉连接后马上销毁该表*/ ( id int not null ) select * from #simple c ...

  10. bzoj2843极地旅行社题解

    题目大意 有n座小岛,当中每一个岛都有若干帝企鹅. 一開始岛与岛之间互不相连.有m个操作.各自是在两个岛之间修一座双向桥,若两岛已连通则不修并输出no,若不连通就输出yes并修建.改动一个岛上帝企鹅的 ...