题目大意:求第k个无平方因子数是多少(无视原题干。1也是全然平方数那岂不是一个数也送不出去了?

无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数

首先二分答案 问题转化为求x以内有多少个无平方因子数

依据容斥原理可知 对于√x以内的全部质数 x以内的无平方因子数=无需是不论什么质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量...

我们回去考虑莫比乌斯函数,我们发现每个质数乘积的符号与莫比乌斯函数的符号恰好吻合!

于是我们枚举每个数,假设这个数是奇数个不同质数的乘积,那么mu为负,偶数个则mu为正。否则mu为零

故答案即Σx/(i*i)*mu[i]

大早上起来连线性筛都打不正确我也是醉了。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 44723
using namespace std;
int mu[M]={0,1},prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
for(i=2;i<M;i++)
{
if(!not_prime[i])
mu[i]=-1,prime[++tot]=i;
for(j=1;prime[j]*i<M;j++)
{
not_prime[prime[j]*i]=1;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
}
int Judge(int x)
{
int i,re=0;
for(i=1;i*i<=x;i++)
re+=x/(i*i)*mu[i];
return re;
}
int Bisection(int k)
{
int l=1,r=k<<1;
while(l+1<r)
{
int mid=(l>>1)+(r>>1)+(l&r&1);
if( Judge(mid)>=k )
r=mid;
else
l=mid;
}
if( Judge(l)>=k )
return l;
return r;
}
int main()
{
int T,k;
Linear_Shaker();
for(cin>>T;T;T--)
{
scanf("%d",&k);
printf("%d\n",Bisection(k) );
}
return 0;
}

BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  5. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  8. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

随机推荐

  1. 从如何停掉 Promise 链说起

    在使用Promise处理一些复杂逻辑的过程中,我们有时候会想要在发生某种错误后就停止执行Promise链后面所有的代码. 然而Promise本身并没有提供这样的功能,一个操作,要么成功,要么失败,要么 ...

  2. no斜体 背景图片坐标

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 检索COM类工厂中CLSID 为 {000209FF-0000-0000-C000-000000000046}的组件时失败, 原因是出现以下错误: 80070005

    主要问题原因是Word权限配置问题 解决方案: 控制面板-管理工具-组件服务-计算机-我的电脑-DCOM配置 在列表中找到microsoft word97-2003 document 右键选择属性,选 ...

  4. Redis 之order set有序集合结构及命令详解

    1.zadd key score1 value1 score2 value2  添加元素 2.zrem key value1 value2 ..  删除集合中的元素 3.zremrangebyscor ...

  5. strcmp 与 _tcscmp

    strcmp 用来比较ANSI字符串,而_tcscmp用来比较UNICODE(宽字符)的字符串.ANSI字符串中,1个英文字母为1个字节,1个中文字符为2个字节,遇到0字符表示字符串结束.而在UNIC ...

  6. 【数值计算方法】二分法求根的C++简单实现

    给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 1 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ. 2 求区间(a,b)的中点c. 3 计算f(c). (1) 若f( ...

  7. JAVA经典题--死锁案例

    死锁原理: 两个线程相互等待对方释放同步监视器 例子程序: public class TestDeadLock implements Runnable { public int flag = 1; s ...

  8. Django CBV视图解决csrf认证

    urls.py from django.conf.urls import url from appxx import views urlpatterns = [ url(r"^$" ...

  9. BOM对象和DOM对象

    一.BOM对象 BOM(Browser Object Model)是指浏览器对象模型,可以对浏览器窗口进行访问和操作.使用 BOM,开发者可以移动窗口.改变状态栏中的文本以及执行其他与页面内容不直接相 ...

  10. 爬虫系列(九) xpath的基本使用

    一.xpath 简介 究竟什么是 xpath 呢?简单来说,xpath 就是一种在 XML 文档中查找信息的语言 而 XML 文档就是由一系列节点构成的树,例如,下面是一份简单的 XML 文档: &l ...